FIELDS OF PARALLEL VECTORS IN CONFORMALLY FLAT SPACES

By Jack Levine

1. Introduction. In his paper on hypersurfaces in an Einstein space, Wong [12] has considered the problem of obtaining conditions on a conformally flat space $C_{n}, n>3$, in order that it may admit a scalar ρ with vanishing second covariant derivative, $\rho_{, i i}=0$. In case $\xi \equiv g^{i j} \rho_{, i} \rho_{, i} \neq 0$, he obtained the canonical fundamental form of such a C_{n},

$$
\begin{equation*}
e_{1}\left(d x^{1}\right)^{2}+\sum e_{\alpha}\left(d x^{\alpha}\right)^{2} /\left[1+\frac{1}{4} K_{0} \sum e_{\alpha}\left(x^{\alpha}\right)^{2}\right] \quad(\alpha=2, \cdots, n) \tag{1.1}
\end{equation*}
$$

In case $\xi=0$, the canonical form obtained was

$$
\begin{equation*}
\sum_{1}^{n-2} e_{\alpha}\left(d x^{\alpha}\right)^{2}+2 d x^{n-1} d x^{n}+\left[Z \sum_{1}^{n-2} e_{\alpha}\left(x^{\alpha}\right)^{2}+\sum_{1}^{n-2} Z_{\alpha} x^{\alpha}+Z_{n-1}\right]\left(d x^{n}\right)^{2} \tag{1.2}
\end{equation*}
$$

In (1.1) the constant $K_{0} \neq 0$, and in (1.2) the Z 's are arbitrary functions of x^{n}. These results were based on the work of Brinkman [1].

The equations $\rho_{, i i}=0$ imply the existence of a field of parallel vectors $\rho_{, i}$. In this paper we consider the problem of the existence of a set of $r=p+q$ fields of parallel vectors in a C_{n}, of which p are non-null, and q are null vectors. Such a C_{n} will be denoted by $C_{n}(p, q)$. It will be shown that if $r>1$ the $C_{n}(p, q)$ is a flat-space, and hence the only possibilities are $C_{n}(1,0)$ and $C_{n}(0,1)$.

A $C_{n}(1,0)$ is shown to be a symmetric space of Cartan of class 1. Also, both $C_{n}(1,0)$ and $C_{n}(0,1)$ are shown to be spaces of recurrent curvature, a type of space considered by Ruse in his study of harmonic spaces [9]. Such a space is a V_{n} in which (3.11) is satisfied, i.e., a space of recurrent curvature.

Necessary and sufficient conditions in invariant form are stated in Theorem 3.1 in order that a C_{n} admit exactly one parallel vector field. Also new canonical forms of the fundamental forms are obtained in $\S 4$. In addition the equations of imbedding of a $C_{n}(1,0)$ in a flat S_{n+1} are given, the $C_{n}(1,0)$ being expressed as a spherical hypercylinder in the S_{n+1}. Finally some geometric properties of the $C_{n}(1,0)$ are obtained involving its second fundamental form.

From a theorem of Cartan it is known that symmetric spaces admit transitive groups of motions with sub-groups of rotations [11; 48]. The group associated with a $C_{n}(1,0)$ is found to consist of $1+n(n-1) / 2$ parameters with a rotation sub-group of $n(n-1) / 2$ parameters.

Indices h, i, j, k, m have the range $1, \cdots, n ; \alpha, \beta$, the range $2, \cdots, n$; and other ranges are as indicated. We assume $n>2$ unless otherwise stated.

Received January 3, 1949; in revised form, July 6, 1949.

