AN OSCILLATION CRITERION INVOLVING A MINIMUM PRINCIPLE

By C. R. PUTNAM

1. Let q = q(x) be a real-valued continuous function on the half-line $0 \le x < \infty$. A real-valued function y = y(x), where $0 \le x < \infty$, will be said to belong to class $\Omega(X)$, $X \ge 0$, if

(i) y(x) is continuous for $0 \le x < \infty$;

(ii) y(x) = 0 for $0 \le x \le X$;

(iii) the half-line $0 \le x < \infty$ can be divided into a sequence of intervals $0 \le x \le a_1$, $a_1 \le x \le a_2$, \cdots , where $a_n \to \infty$ as $n \to \infty$, in such a way that y(x) possesses a continuous derivative y'(x) on each of these intervals;

(iv) y(x) is of class (L^2) and is normalized by

(1)
$$\int_0^\infty y^2 dx = 1;$$

and finally,

(v) the integral

(2)
$$\int_0^\infty (y'^2 + |q| y^2) dx < \infty.$$

It is clear that the class (of functions) $\Omega(x_1)$ contains the class $\Omega(x_2)$ if $x_1 \leq x_2$. Let $\mu = \mu(x)$ denote the greatest lower bound (g.l.b.), possibly $-\infty$, of the collection of numbers

(3)
$$J(y) = \int_0^\infty (y'^2 + qy^2) \, dx$$

where y belongs to $\Omega(x)$, that is,

(4)
$$\mu(x) = \text{g.l.b. } J(y) \qquad (y \text{ in } \Omega(x)).$$

It is clear that $\mu(x)$ is a monotone non-decreasing function of x on $0 \le x < \infty$ (with the understanding that possibly $\mu(x) \equiv -\infty$). The following oscillation criterion will be proved:

(*) Let q = q(x) be a continuous function on the half-line $0 \le x < \infty$. The differential equation

$$(5) y'' - qy = 0$$

is oscillatory, that is, every solution of (5) possesses an infinity of zeros on $0 \le x < \infty$, if and only if the function $\mu(x)$ defined by (4) and (3) satisfies the inequality

(6)
$$\mu(x) < 0 \qquad (0 \le x < \infty).$$

Received November 26, 1948.