HARMONIC POLYNOMIALS

By Maxwell O. Reade

1. Introduction. Most well-known characterizations of harmonic polynomials are linear in character; they depend upon variations of the Laplace equation or upon variations of the Gauss mean-value theorems. One recent exception is a remarkable result due to Gustin [3; 217] who used the non-linear character of his criterion to obtain simple proofs of some fundamental results in the theory of harmonic functions.

Characterizations of harmonic polynomials have been obtained in several recent papers; these criteria have been linear. It is the purpose of this note to obtain characterizations of harmonic polynomials which are analogues of Gustin's result; Gustin's theorem may be obtained from (6) below by introducing the integral implied by allowing n to tend toward infinity. We take this occasion to prove a characterization of harmonic polynomials due to Beckenbach and the present author [2].
2. Definitions and lemma. Let n denote a fixed integer, $n \geq 2$, and let ϕ denote an angle, $-\pi / n \leq \phi<\pi / n$. Then for each $r>0$ the points $z+$ $r \zeta_{m} \equiv(x+i y)+r e^{i(\phi+\pi(2 m-1) / n)}, m=1,2, \cdots, n$, are the vertices of a regular n-gon $p=p_{n}(z, r, \phi)$ with center z, circumradius r, and "orientation" ϕ. The length of p is $2 n r \tan \pi n^{-1}$ and will be denoted by $\left\|p_{n}\right\|$.

For $n \geq 2$, and for each angle θ,

$$
\begin{equation*}
\sum_{m=1}^{n}\left[\cos \left(\theta+2 m \pi n^{-1}\right)+i \sin \left(\theta+2 m \pi n^{-1}\right)\right]^{2}=0 \tag{1}
\end{equation*}
$$

$$
\sum_{m=1}^{n}\left[\cos \left(\theta+2 m k \pi n^{-1}\right)+i \sin \left(\theta+2 m k \pi n^{-1}\right)\right]=n \delta_{k, n}(\cos \theta+i \sin \theta)
$$

where $\delta_{k, n}=1$ if k is an integral multiple of n, and $\delta_{k, n}=0$ otherwise (see $[4 ; 924]$).
The real and imaginary parts of $(x+i y)^{n}$ are basic homogeneous polynomials of degree n, for $n=0,1,2, \cdots$. They will be denoted by $H_{1, n}(x, y)$ and $H_{2, n}(x, y)$, respectively.

If $f(x, y) \equiv f(z)$ is a function defined for $z=x+i y$ in the unit disc $D:$ $|z|<1$, then the following result holds (see [1; 336]).

Lemma. If $f(x, y) \equiv f(z)$ is real and continuous in \mathfrak{D}, if n is a fixed integer, $n \geq 2$, and if ϕ is fixed, $-\pi / n \leq \phi<\pi / n$, then a necessary and sufficient condition that

Received February 3, 1949. The author is grateful for financial aid offered by ONR under project M786, N8-ONR-581, University of Michigan.

