AN ANALOG OF AN IDENTITY DUE TO WILTON
By Ricuarp BELLMAN

1. Introduction. The following relation was demonstrated by Wilton [5]:
THEOREM 1. Lets = 4+ i, 8’ =o' +it',o > —1,0¢ > =1,0 4+ ¢ > 0.
Then
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where (s 2 §') represents a term similar to the first with s and s’ interchanged.
In particular, if s = 3 4 4, s = 1 — it, there results
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The preceding formula can be used to ascertain the asymptotic behavior of the
mean value
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as T — . In place of (1.2) it is easier to follow Wilton and treat
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The relationship between (1. 2) and (1.3) is well known as a consequence of the
fundamental Tauberian theorems of Hardy and Littlewood.

The purpose of this paper is to generalize Theorem 1, and incidentally obtaln
a generalization of (1.1). We shall prove

THEOREM 2. For ¢ > 1,0’ > %, 0 + o > 1, the following identity is valid:
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