POLYNOMIALS WITH ZEROS ON A RECTIFIABLE JORDAN CURVE

By Gerald R. Mac Lane

1. Introduction. The principal object of this paper is to prove the following theorem.

Theorem I. Let D be a bounded simply-connected domain in the z-plane, bounded by a rectifiable Jordan curve Γ. Let $f(z)$ be holomorphic and never zero in D. There exists a sequence of polynomials $P_{n}(z), n=1,2, \cdots$, such that each $P_{n}(z)$ has all of its zeros on Γ, and such that $P_{n}(z) \rightarrow f(z)$ as $n \rightarrow \infty$, uniformly in any closed subset of D. The subscript n is not intended to imply anything about the degree of $P_{n}(z)$.

There are two obvious aspects of this theorem that are of interest: firstly, it illustrates the possible latitude in the choice of approximating polynomials (see §7, Theorem IV); and, secondly, it may be thought of as complementary to the theorem of Jentzsch [3], which states that the closure of the set of all zeros of the partial sums of a Taylor series contains the circumference of the circle of convergence.

In §2 representations are chosen for $f(z)$ and $P_{n}(z)$, the similarity of which is the basis for the proof; the actual sequence of polynomials is defined in §3, and the convergence to $f(z)$ is demonstrated in $\S 4$, under the assumption that Γ is analytic (Theorem II). This special case is proved first, since it is used in proving the general case; also in this case $P_{n}(z)$ may be chosen of degree n in such a way that the convergence is geometric in any closed subset of D, provided that $f(z)$ is holomorphic in $D+\Gamma$. In $\S 5$ Theorem I is proved, while $\S 6$ is devoted to an extension to multiply-connected domains (Theorem III).

In connection with the question, how much may one restrict the zeros of approximating polynomials, Theorem I is completed (Theorem IV) by showing that the zeros may be placed on any rectifiable Jordan curve which surrounds the domain in which $f(z)$ is to be approximated. The distribution of the zeros along Γ is the subject of $\S 8$ (Theorem V); in particular, it is shown that these must be everywhere dense on Γ; and hence the zeros cannot be essentially more restricted.

The simplest possible examples of Theorem I are the following: Let Γ be the circle $|z|=1$. If $f(z) \equiv 1$, we may take $P_{n}(z)=1-z^{n}$. If $f(z)=\left(z-e^{i b}\right)^{-1}, b$ real, we may take

$$
P_{n}(z)=\frac{1-z^{n} e^{-n i b}}{z-e^{i b}}=-e^{-n i b} \prod_{k=1}^{n-1}\left(z-e^{i b+2 \pi i k / n}\right)
$$

Received November 8, 1948.

