THE ZEROS OF CERTAIN REAL RATIONAL AND MEROMORPHIC FUNCTIONS

By Morris Marden

1. Introduction. Let us assume that $f(z)$ and $f_{1}(z)$ are real polynomials whose ratio $F_{1}(z)=f_{1}(z) / f(z)$ has a partial fraction development of the form

$$
\begin{equation*}
F_{1}(z)=\sum_{i=1}^{n} \gamma_{i} /\left(z-c_{i}\right) \tag{1.1}
\end{equation*}
$$

involving the n distinct complex numbers $c_{i}=a_{i}+i b_{i}$ and the complex numbers $\gamma_{j}=\alpha_{i}+i \beta_{i}=m_{i} e^{i \mu_{i}}$ with $\alpha_{j} \neq 0$ for all j. If not all the c_{i} are real, we may assume that $b_{i}>0$ for $1 \leq j \leq p \leq n / 2 ; b_{i}=-b_{i-p}$ and $\beta_{j}=-\beta_{j-p}$ for $p<j \leq 2 p$, and $b_{i}=\beta_{i}=\mu_{i}=0$ for $j>2 p$. For convenience, let us also assume that $\left|\mu_{i}\right|<\pi / 2$ and that the m_{i} are positive or negative. Knowing the location of the zeros c_{i} of $f(z)$, the values of the μ_{i} and the signs of the m_{i}, we wish to determine the location of the zeros of $f_{1}(z)$.

Among the polynomials $f_{1}(z)$ is $f^{\prime}(z)$, the derivative of $f(z)$. But the location of the real zeros of $f^{\prime}(z)$ relative to those of $f(z)$ is described by the well-known theorem of Rolle. The location of the non-real zeros of $f^{\prime}(z)$ relative to those of $f(z)$ is described by the following theorem of Jensen [2]. (The first published proof is by Walsh [5].)

Each non-real zero of the derivative of a real polynomial $f(z)$ lies in at least one of the circles (called the Jensen circles of $f(z)$) which have as diameters the line segments joining the pairs of conjugate imaginary zeros of $f(z)$.

In the present paper we propose to obtain for the zeros of $f_{1}(z)$ some generalizations not only of Rolle's Theorem and Jensen's Theorem but also of certain supplementary theorems due to Walsh. In these generalizations we shall replace the Jensen circles of $f(z)$ by the circles $K\left(c_{i}, \mu_{i}\right), j=1,2, \cdots, p$, of $F_{1}(z)$ defined as follows. The circle $K\left(c_{i}, \mu_{i}\right)$ shall be the circle which passes through the conjugate imaginary zeros c_{i} and $c_{i}^{*}=c_{i+p}$ and which has its center on the real axis at the point $z=k_{i}$ such that the angle c_{i}^{*}, c_{i}, k_{i} is μ_{i}. That is,

$$
\begin{equation*}
k_{i}=a_{i}+b_{i} \tan \mu_{i} \quad(k=1,2, \cdots, p) \tag{1.2}
\end{equation*}
$$

Thus the Jensen circles of $f(z)$ are the circles $K\left(c_{i}, 0\right)$ of $F_{1}(z)=f^{\prime}(z) / f(z)$.
In §2 we shall consider the location of the real zeros of $f_{1}(z)$ and in §3 the non-real zeros of $f_{1}(z)$. In $\S 4$ we shall extend our results to systems of rational functions of the form (1.1); in §5 to meromorphic functions of similar form and finally in $\S 6$ to real functions of the form $G_{1}(z)=A-B^{2} z+F_{1}(z)$.

