FINITE SUMS AND INTERPOLATION FORMULAS OVER $GF[p^n, x]$

By L. CARLITZ

1. Introduction. The notation used is that of [2]; in particular polynomials $\varepsilon GF[p^n, x]$ will be denoted by A, B, \dots, M . If t is a second indeterminate it is easily proved (§2) that a polynomial f(t) satisfies f(t + A) = f(t) for all A of degree $\langle m$ if and only if $f(t) = g(\psi_m(t))$, where g(t) is also a polynomial and

(1.1)
$$\psi_m(t) = \prod_{\deg M < m} (t - A) = \sum_{i=0}^m (-1)^{m-i} {m \brack i} t^{p^{ni}}.$$

We accordingly discuss (§3) the equation

(1.2)
$$\sum_{\deg A < m} h(t + A) = g(\psi_m(t)).$$

In §4 we consider sums of the type $\sum_{M} h(M)M(t)$ and also give some criteria for the vanishing of

$$\sum_{\deg M=m}^{\prime} M^{r}, \qquad \sum_{\deg M 0).$$

(The notation \sum' indicates that the summation is over primary M only.)

In the remainder of the paper we set up various interpolation formulas (see (5.2), (5.5), (6.1), (6.2), (6.12), (7.1), (8.3)). Of the applications, we mention the theorem that a polynomial g(t) of degree $< p^{nm}$ is integral-valued if and only if g(M) is integral for all M of degree < m. For other applications we cite Theorems 8.1 and 8.2.

2. Some preliminary theorems.

THEOREM 2.1. A polynomial f(t) with arbitrary coefficients satisfies

(2.1)
$$f(t + A) = f(A)$$

for all A ε GF[pⁿ, x] of degree $\langle m \text{ if and only if } f(t) = g(\psi_m(t)), \text{ where } g(t) \text{ is a polynomial.}$

Proof. By (1.1), $\psi_m(t + A) = \psi_m(t)$ for deg A < m and therefore $g(\psi_m(t + A)) = g(\psi_m(t))$.

To prove the converse put

(2.2)
$$f(t) = h_0(t) + h_1(t)\psi_m(t) + h_2(t)\psi_m^2(t) + \cdots,$$

where deg $h_i(t) < p^{nm}$. If we replace t by t + A and equate coefficients we get $h_i(t + A) = h_i(t)$. Hence it is only necessary to show that if h(t + A) = h(t), deg $h(t) < p^{nm}$, deg A < m, then h(t) is constant. Indeed if $h(t_0) = 0$ then

Received August 30, 1948.