FINITE SUMS AND INTERPOLATION FORMULAS OVER $G F\left[p^{n}, x\right]$

By L. Carlitz

1. Introduction. The notation used is that of [2]; in particular polynomials $\varepsilon G F\left[p^{n}, x\right]$ will be denoted by A, B, \cdots, M. If t is a second indeterminate it is easily proved (§2) that a polynomial $f(t)$ satisfies $f(t+A)=f(t)$ for all A of degree $<m$ if and only if $f(t)=g\left(\psi_{m}(t)\right)$, where $g(t)$ is also a polynomial and

$$
\left.\psi_{m}(t)=\prod_{\operatorname{deg} M<m}(t-A)=\sum_{i=0}^{m}(-1)^{m-i}\left[\begin{array}{c}
m \tag{1.1}\\
i
\end{array}\right]\right]^{e^{n i}}
$$

We accordingly discuss (§3) the equation

$$
\begin{equation*}
\sum_{\operatorname{deg} A<m} h(t+A)=g\left(\psi_{m}(t)\right) . \tag{1.2}
\end{equation*}
$$

In $\S 4$ we consider sums of the type $\sum_{M} h(M) M(t)$ and also give some criteria for the vanishing of

$$
\sum_{\operatorname{dos} M=m}^{\prime} M^{r}, \quad \sum_{\operatorname{dog} M<m} M^{r} \quad(r>0)
$$

(The notation \sum^{\prime} indicates that the summation is over primary M only.)
In the remainder of the paper we set up various interpolation formulas (see (5.2), (5.5), (6.1), (6.2), (6.12), (7.1), (8.3)). Of the applications, we mention the theorem that a polynomial $g(t)$ of degree $<p^{n m}$ is integral-valued if and only if $g(M)$ is integral for all M of degree $<m$. For other applications we cite Theorems 8.1 and 8.2.

2. Some preliminary theorems.

Theorem 2.1. A polynomial $f(t)$ with arbitrary coefficients satisfies

$$
\begin{equation*}
f(t+A)=f(A) \tag{2.1}
\end{equation*}
$$

for all $A \varepsilon G F\left[p^{n}, x\right]$ of degree $<m$ if and only if $f(t)=g\left(\psi_{m}(t)\right)$, where $g(t)$ is a polynomial.

Proof. By (1.1), $\psi_{m}(t+A)=\psi_{m}(t)$ for $\operatorname{deg} A<m$ and therefore $g\left(\psi_{m}(t+A)\right)=g\left(\psi_{m}(t)\right)$.

To prove the converse put

$$
\begin{equation*}
f(t)=h_{0}(t)+h_{1}(t) \psi_{m}(t)+h_{2}(t) \psi_{m}^{2}(t)+\cdots, \tag{2.2}
\end{equation*}
$$

where $\operatorname{deg} h_{i}(t)<p^{n m}$. If we replace t by $t+A$ and equate coefficients we get $h_{i}(t+A)=h_{i}(t)$. Hence it is only necessary to show that if $h(t+A)=$ $h(t), \operatorname{deg} h(t)<p^{n m}, \operatorname{deg} A<m$, then $h(t)$ is constant. Indeed if $h\left(t_{0}\right)=0$ then

Received August 30, 1948.

