THE LAW OF REPETITION OF PRIMES IN AN ELLIPTIC DIVISIBILITY SEQUENCE

By Morgan Ward

1. Let
(U) :

$$
U_{n}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta)
$$

$$
(n=0,1, \cdots)
$$

be the Lucas sequence formed on the roots α and β of the polynomial x^{2} $P x+Q$ where P and Q are rational integers. (This last restriction may be weakened (see Lehmer [1]). If $\alpha=\beta$, we define U_{n} to be $n \alpha^{n-1}$.) Among the many arithmetical properties of (U) discovered by Lucas [2], [3], there are two which are of fundamental importance. The first property is Lucas' "law of apparition" of primes in (U). (We formulate Lucas' result in such a manner that it will apply to the more general elliptic sequences considered later.)

If p is a prime not dividing both of the initial values U_{3} and U_{4} of (U), then there exists a number $\rho=\rho(p)$ such that $U_{n} \equiv 0(\bmod p)$ if and only if $n \equiv 0$ $(\bmod \rho)$.
ρ is called the rank of apparition, or simply the rank, of p in (U). It divides $p-(D / p)$ where D is the discriminant of $x^{2}-P x+Q$, so that $\rho(p) \leq p+1$.

The second property is the "law of repetition" of primes in (U) (see Lehmer [1] for a proof).

If ρ is the rank of a prime p in (U) not dividing both U_{3} and U_{4} and p^{k} is the highest power of p which divides U_{ρ}, then the rank of apparition of p^{n} in (U) is ρ or $p^{n-k} \rho$ according as $n \leq k$ or $n \geq k$.
k is usually one. It is easily seen that p^{k} is the highest power of p dividing $U_{p-(D / p)}$. Hence the determination of when k is greater than one is a generalization of the problem of finding when the quotient of Fermat $\left(c^{p-1}-1\right) / p$ is divisible by p.

2: I have recently studied the arithmetical properties of a class of elliptic sequences which includes Lucas' sequences as a special case. (See [4]. The type of sequence considered in this paper is called a "general" elliptic divisibility sequence in [4].) An elliptic sequence (h): $h_{0}, h_{1}, h_{2}, \cdots, h_{n}$ is a particular solution of the functional equation

$$
\begin{equation*}
\omega_{m+n} \omega_{m-n}=\omega_{m+1} \omega_{m-1} \omega_{n}^{2}-\omega_{n+1} \omega_{n-1} \omega_{m}^{2} \tag{2.1}
\end{equation*}
$$

subject to the restrictions

$$
\begin{gather*}
h_{0}=0 ; h_{1}=1 ; h_{2}, h_{3}, h_{4} \text { rational integers; } \tag{2.2}\\
h_{2} h_{3} \neq 0 ; \tag{2.3}\\
h_{2} \text { divides } h_{4} . \tag{2.4}
\end{gather*}
$$

Received May 17, 1948.

