LIMITS FOR THE CHARACTERISTIC ROOTS OF A MATRIX. III

BY ALFRED BRAUER

This paper is a continuation of my papers [1] and [2]. The numeration of the theorems and equations will be continued.

The following theorem will be proved.

THEOREM 19. Let $A = (a_{\kappa\lambda})$ be a square matrix of order n and $f_1(y), f_2(y), \cdots, f_n(y)$ be arbitrary polynomials. Denote the elements of the matrix $f_{\star}(A)$ by $a_{\kappa\lambda}^{(f_{\star})}$ and set

$$\sum_{\substack{\lambda=1\\ \kappa\neq\kappa}}^{n} |a_{\kappa\lambda}^{(f,\cdot)}| = P_{\kappa}^{(f,\cdot)} \qquad (\kappa,\nu=1,\,2,\,\cdots,\,n).$$

Each characteristic root ω of A satisfies at least one of the n inequalities

$$|f_r(\omega) - a_{rr}^{(f_r)}| \le P_r^{(f_r)}$$
 $(r = 1, 2, \dots, n),$

and at least one of the n(n-1)/2 inequalities

$$|f_{r}(\omega) - a_{rr}^{(f_{r})}| |f_{s}(\omega) - a_{ss}^{(f_{s})}| \leq P_{r}^{(f_{r})}P_{s}^{(f_{s})} \qquad (r, s = 1, 2, \cdots, n; r \neq s).$$

The Theorems 1 and 11 are the special case $f_1 = f_2 = \cdots = f_n = y$. The more general case that the polynomials are equal, but not linear, follows at once from the fact that $f_r(\omega)$ is a characteristic root of $f_r(A)$. But it is of importance that we may choose a suitable polynomial for each row of a given matrix in order to obtain sharp bounds for the characteristic roots.

Often it will be sufficient to use only quadratic polynomials $y^2 - t_r y$ with arbitrary coefficients t_r for $f_r(y)$. For instance, let ω be the greatest in absolute value of the characteristic roots of the matrix

	9	0	0	1	1]	
	1	2	0 2 3 1 1	1	0	
A =	0 0	1	3	2	0 0	
	0	1	1	1	0	
	1	1	1	2	1)	

It will be shown by suitable choice of t_1 , t_2 , \cdots , t_5 that 9.061 $< \omega < 9.215$. Actually we have 9.187 $< \omega < 9.188$. Hence the error for the upper bound is approximately only .3%.

Received February 6, 1948; in revised form June 28, 1948; presented to the American Mathematical Society, September 7, 1948.