LIMITS FOR THE CHARACTERISTIC ROOTS OF A MATRIX. III

By Alfred Brauer

This paper is a continuation of my papers [1] and [2]. The numeration of the theorems and equations will be continued.
The following theorem will be proved.
Theorem 19. Let $A=\left(a_{\kappa \lambda}\right)$ be a square matrix of order n and $f_{1}(y), f_{2}(y), \cdots$, $f_{n}(y)$ be arbitrary polynomials. Denote the elements of the matrix $f_{\nu}(A)$ by $a_{\kappa \lambda}^{(f)}$ and set

$$
\sum_{\substack{\lambda=1 \\ \lambda \neq k}}^{n}\left|a_{k \lambda}^{(f)}\right|=P_{k}^{(f,)} \quad(\kappa, \nu=1,2, \cdots, n) .
$$

Each characteristic root ω of A satisfies at least one of the n inequalities

$$
\left|f_{r}(\omega)-a_{r r}^{(f r)}\right| \leq P_{r}^{(f r)} \quad(r=1,2, \cdots, n)
$$

and at least one of the $n(n-1) / 2$ inequalities

$$
\left|f_{r}(\omega)-a_{r r}^{\left(f_{r}\right)}\right|\left|f_{s}(\omega)-a_{s s}^{\left(f_{s}\right)}\right| \leq P_{r}^{\left(f_{r}\right)} P_{s}^{\left(f_{s}\right)} \quad(r, s=1,2, \cdots, n ; r \neq s) .
$$

The Theorems 1 and 11 are the special case $f_{1}=f_{2}=\cdots=f_{n}=y$. The more general case that the polynomials are equal, but not linear, follows at once from the fact that $f_{r}(\omega)$ is a characteristic root of $f_{r}(A)$. But it is of importance that we may choose a suitable polynomial for each row of a given matrix in order to obtain sharp bounds for the characteristic roots.
Often it will be sufficient to use only quadratic polynomials $y^{2}-t_{r} y$ with arbitrary coefficients t_{r} for $f_{r}(y)$. For instance, let ω be the greatest in absolute value of the characteristic roots of the matrix

$$
A=\left(\begin{array}{lllll}
9 & 0 & 0 & 1 & 1 \\
1 & 2 & 2 & 1 & 0 \\
0 & 1 & 3 & 2 & 0 \\
0 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 2 & 1
\end{array}\right) .
$$

It will be shown by suitable choice of $t_{1}, t_{2}, \cdots, t_{5}$ that $9.061<\omega<9.215$. Actually we have $9.187<\omega<9.188$. Hence the error for the upper bound is approximately only $.3 \%$.

Received February 6, 1948; in revised form June 28, 1948; presented to the American Mathematical Society, September 7, 1948.

