NOTE ON A THEOREM OF CARLITZ

By L. Mirsky

Some years ago Carlitz [1], [2] investigated the behavior, for $n \rightarrow \infty$, of the sum

$$
\sum_{n_{2}+\cdots+n_{s}=n} n_{1}^{\alpha_{1}} \cdots n_{s}^{\alpha_{s}} F_{1}\left(n_{1}\right) \cdots F_{s}\left(n_{s}\right)
$$

where F_{1}, \cdots, F_{s} are arithmetic functions satisfying certain simple conditions, and $\alpha_{1}, \cdots, \alpha_{s}$ are non-negative numbers. For this sum he found an asymptotic formula with estimation of remainder. His first treatment of the problem was based on the circle-method of Hardy and Littlewood; later he succeeded in sharpening his original result by means of an entirely elementary argument. My object is to sharpen Carlitz's result still further.

In $\S \S 1$ and 2 preliminary estimates are derived. In §3 I obtain Carlitz's theorem with an improved error term, and two other theorems of a similar type. Finally, in §4, I consider a few applications of the general theorems.

By suitably modifying the method of the present paper one can study the asymptotic behavior, for $x \rightarrow \infty$, of the "conjugate" sum

$$
\sum_{n \leq x}\left(n+k_{1}\right)^{\alpha_{1}} \cdots\left(n+k_{s}\right)^{\alpha_{s}} F_{1}\left(n+k_{1}\right) \cdots F_{s}\left(n+k_{s}\right),
$$

where k_{1}, \cdots, k_{s} are given integers. An account of this problem is to be published later.

Notation. Small Greek letters and the letters x, u denote real numbers; all other small italic letters denote integers, positive unless the contrary is stated; p is reserved for primes; ϵ stands for an arbitrarily small positive number. 0^{0} is interpreted as 1.

Throughout the paper σ denotes a fixed positive number, and $\theta=$ Max $\left(\frac{1}{2}, 1-\sigma\right)$. The symbol $n \prec \Omega$ means that the integer n belongs to a class Ω. The highest common factor of a_{1}, \cdots, a_{s} will be denoted by (a_{1}, \cdots, a_{s}).

We shall occasionally use the abbreviations

$$
\Gamma=\frac{\Gamma\left(\alpha_{1}+1\right) \cdots \Gamma\left(\alpha_{s}+1\right)}{\Gamma\left(\alpha_{1}+\cdots+\alpha_{s}+s\right)}, \quad \alpha=\alpha_{1}+\cdots+\alpha_{s} .
$$

It will be convenient to write $a \equiv b(\cdot m)$ in place of $a \equiv b(\bmod m)$. We shall also frequently write

$$
\sum\{\mathfrak{E}\} f(m, n, \cdots)
$$

Received December 27, 1947.

