SETS OF COMPLEX NUMBERS ASSOCIATED WITH A MATRIX

By W. V. PARKER

1. Introduction. Let $A = (a_{ij})$ be a square matrix of order n whose elements are complex numbers. If $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$ are vectors such that

(1)
$$x\overline{x}' = \sum_{i=1}^{n} x_i \overline{x}_i = 1, \qquad y\overline{y}' = \sum_{i=1}^{n} y_i \overline{y}_i = 1,$$

then $xA\overline{y}' = \sum_{i_{j=1}}^{n} a_{i_{j}}x_{i}\overline{y}_{j} = \alpha$, where α is a complex number. If S_{1} is the set of all complex numbers of the form $xA\overline{y}'$ where x and y satisfy conditions (1), then S_{1} is the set of all complex numbers in or on the circle of radius ρ_{n} about zero in the complex plane, where ρ_{n}^{2} is the largest of the characteristic roots of $A\overline{A}'$ (see [3]). It is the purpose of this paper to investigate this set further and also to investigate two subsets of this set. The set S_{1} is the set of elements of all matrices $UA\overline{V}'$ where U and V are unitary matrices $(U\overline{U}' = V\overline{V}' = I)$.

The set S_2 consisting of all complex numbers of the form $xA\bar{x}'$, where x satisfies (1), is a closed convex set in the complex plane and is called the *field* of values of A (see [1]). The set S_2 is the set of all diagonal elements of all matrices $UA\overline{U}'$ where U is a unitary matrix. Hence S_2 is unchanged if A is replaced by $UA\overline{U}'$. The set S_3 consisting of all complex numbers of the form $xA\bar{y}'$, where x and y satisfy (1) and also $x\bar{y}' = 0$, is the set of all non-diagonal elements of all matrices $UA\overline{U}'$ where U is a unitary matrix. The set S_3 is also unchanged if A is replaced by $UA\overline{U}'$.

2. The sets S_2 and S_3 . If the characteristic roots of $A\overline{A'}$ are $\rho_1^2 \leq \rho_2^2 \leq \cdots \leq \rho_n^2$ and $R = \text{diag.} \{\rho_1, \rho_2, \cdots, \rho_n\}$ where $\rho_i \geq 0$, there exist unitary matrices U and V such that $\overline{U'AV} = R$ (see [2; 78]). Hence $UR\overline{V'} = A = (a_{ij})$ and $a_{ij} = u_i R\overline{v}_j$, where $u_i = (u_{i1}, u_{i2}, \cdots, u_{in})$ and $v_i = (v_{i1}, v_{i2}, \cdots, v_{in})$ are the *i*-th rows of U and V respectively. Write $|u_{ik}| = \xi_{ik}$ and $|v_{ik}| = \eta_{ik}$ and it follows that

$$|a_{ij}| \leq \sum_{k=1}^{n} \rho_k \xi_{ik} \eta_{jk} \leq \frac{1}{2} \sum_{k=1}^{n} \rho_k (\xi_{ik}^2 + \eta_{jk}^2) \leq \frac{1}{2} \rho_n \sum_{k=1}^{n} (\xi_{ik}^2 + \eta_{jk}^2) = \rho_n ,$$

since

$$\sum_{k=1}^{n} \xi_{ik}^{2} = \sum_{k=1}^{n} \eta_{ik}^{2} = 1.$$

Received March 8, 1948.