SETS OF COMPLEX NUMBERS ASSOCIATED WITH A MATRIX

By W. V. Parker

1. Introduction. Let $A=\left(a_{i j}\right)$ be a square matrix of order n whose elements are complex numbers. If $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ are vectors such that

$$
\begin{equation*}
x \bar{x}^{\prime}=\sum_{i=1}^{n} x_{i} \bar{x}_{i}=1, \quad y \bar{y}^{\prime}=\sum_{i=1}^{n} y_{i} \bar{y}_{i}=1, \tag{1}
\end{equation*}
$$

then $x A \bar{y}^{\prime}=\sum_{i j=1}^{n} a_{i j} x_{i} \bar{y}_{i}=\alpha$, where α is a complex number. If S_{1} is the set of all complex numbers of the form $x A \bar{y}^{\prime}$ where x and y satisfy conditions (1), then S_{1} is the set of all complex numbers in or on the circle of radius ρ_{n} about zero in the complex plane, where ρ_{n}^{2} is the largest of the characteristic roots of $A \bar{A}^{\prime}$ (see [3]). It is the purpose of this paper to investigate this set further and also to investigate two subsets of this set. The set S_{1} is the set of elements of all matrices $U A \bar{V}^{\prime}$ where U and V are unitary matrices $\left(U \bar{U}^{\prime}=V \bar{V}^{\prime}=I\right)$.
The set S_{2} consisting of all complex numbers of the form $x A \bar{x}^{\prime}$, where x satisfies (1), is a closed convex set in the complex plane and is called the field of values of A (see [1]). The set S_{2} is the set of all diagonal elements of all matrices $U A \bar{U}^{\prime}$ where U is a unitary matrix. Hence S_{2} is unchanged if A is replaced by $U A \bar{U}^{\prime}$. The set S_{3} consisting of all complex numbers of the form $x A \bar{y}^{\prime}$, where x and y satisfy (1) and also $x \bar{y}^{\prime}=0$, is the set of all non-diagonal elements of all matrices $U A \bar{U}^{\prime}$ where U is a unitary matrix. The set S_{3} is also unchanged if A is replaced by $U A \bar{U}^{\prime}$.
2. The sets S_{2} and S_{3}. If the characteristic roots of $A \overline{A^{\prime}}$ are $\rho_{1}^{2} \leq \rho_{2}^{2} \leq$ $\cdots \leq \rho_{n}^{2}$ and $R=$ diag. $\left\{\rho_{1}, \rho_{2}, \cdots, \rho_{n}\right\}$ where $\rho_{i} \geq 0$, there exist unitary matrices U and V such that $\bar{U}^{\prime} A V=R$ (see [2; 78]). Hence $U R \bar{V}^{\prime}=A=$ $\left(a_{i j}\right)$ and $a_{i j}=u_{i} R \bar{v}_{i}^{\prime}$, where $u_{i}=\left(u_{i 1}, u_{i 2}, \cdots, u_{i n}\right)$ and $v_{i}=\left(v_{i 1}, v_{i 2}\right.$, $\cdots, v_{i n}$) are the i-th rows of U and V respectively. Write $\left|u_{i k}\right|=\xi_{i k}$ and $\left|v_{i k}\right|=\eta_{i k}$ and it follows that

$$
\left|a_{i j}\right| \leq \sum_{k=1}^{n} \rho_{k} \xi_{\xi_{i k}} \eta_{i k} \leq \frac{1}{2} \sum_{k=1}^{n} \rho_{k}\left(\xi_{i k}^{2}+\eta_{i k}^{2}\right) \leq \frac{1}{2} \rho_{n} \sum_{k=1}^{n}\left(\xi_{i k}^{2}+\eta_{i k}^{2}\right)=\rho_{n},
$$

since

$$
\sum_{k=1}^{n} \xi_{i k}^{2}=\sum_{k=1}^{n} \eta_{j k}^{2}=1
$$

Received March 8, 1948.

