DIFFERENTIAL EQUATIONS WITH NON-OSCILLATORY EIGENFUNCTIONS

BY PHILIP HARTMAN

1. The statement of the theorem. In the differential equation

(1) $x'' + (\lambda - q)x = 0$

and boundary condition

(2)
$$\alpha x(0) + \beta x'(0) = 0 \qquad (\alpha^2 + \beta^2 \neq 0),$$

let q = q(t), where $0 \le t < \infty$, be a real-valued, continuous function; λ a real-valued eigenvalue parameter; and α , β real numbers. In the sequel, by a "solution of a differential equation" will be meant a real-valued, non-trivial $(\neq 0)$ solution. According to Weyl's classification [11; 238], (1) is in the *Grenz-punktfall* if (1) and (2) determine a non-degenerate eigenvalue problem, that is, if there is at least one solution x = x(t) of (1) for which

(3)
$$\int_0^\infty x^2(t) dt < \infty$$

fails to hold. (Of course, since any solution is continuous for $t \ge 0$, only its behavior for large t is involved in the (L^2) -condition (3).) If there is some value of λ for which (1) has at least one solution x = x(t) that does not satisfy (3), then the same is true for every λ (see Weyl [11; 238]; see also Wintner [14; 266, (iv bis)] and Bellman [1; 513]). A number λ is said to be an eigenvalue, if there exists an $x = x(t) \neq 0$ satisfying (1), (2) and (3); the function x = x(t) is called an eigenfunction belonging to λ .

When q(t) satisfies the unilateral restriction

(4)
$$-\infty < \mu \le \infty$$
, $\mu = \liminf_{t \to \infty} q(t)$,

Weyl [11; 251–257] has shown that (1) is in the Grenzpunktfall and that the set of points λ of the spectrum satisfying $\lambda < \mu$ is either empty or consists of a finite or infinite increasing sequence of eigenvalues $\lambda_0 < \lambda_1 < \cdots < \mu$. When $\mu < \infty$, the number *n* of such eigenvalues, $0 \le n \le \infty$, is the same as the number of zeros on $0 < t < \infty$ of a solution $y = y(t) \neq 0$ of

(5)
$$y'' + (\mu - q)y = 0$$

and

$$\alpha y(0) + \beta y'(0) = 0.$$

Received November 24, 1947.