NORMAL PRODUCTS OF MATRICES

By N. A. Wiegmann

It is known that for any $n \times n$ non-singular matrix A with elements in the complex field there exists a unitary matrix U and two positive definite hermitian matrices H_{1} and H_{2} such that $A=H_{1} U=U H_{2}$ and that this representation is unique [5]; in the singular case a similar representation exists but there is some arbitrariness involved in the representation [2]. For a matrix of order 1×1 this form becomes the familiar $\rho e^{i \theta}$ polar form of a complex number and so this is referred to as the "polar representation" for A. If A is normal (i.e., $A A^{*}=A^{*} A$), the hermitian and unitary polar matrices commute, and if a polar representation is had for A for which the polar matrices commute, then A is normal. Also, if two normal matrices commute, their product is a normal matrix; but the converse is not true as a pair of non-commutative unitary matrices shows. The following results are had for normal products of matrices.

Theorem 1. If A, B and $A B$ are normal matrices, then $B A$ is a normal matrix.
If A and B commute, the theorem is trivially true. The proof is by induction. The theorem is obviously true for matrices of order 1×1.
Assume the theorem to be true for matrices of order $k \times k, k=1,2, \cdots$, $n-1$. Let A, B and $A B$ be $n \times n$ normal matrices; then there exists a unitary matrix U such that $U A U^{*}=D$ where the diagonal matrix D is in a form such that $d_{1} d_{1}^{*} \geq d_{2} d_{2}^{*} \geq \cdots \geq d_{n} d_{n}^{*}$ where the d_{i} are the diagonal elements of D, and where d^{*} is the complex conjugate of d. Let $U B U^{*}=B_{1}$ so that $U A B U^{*}=$ $D B_{1}$ and therefore D, B_{1} and $D B_{1}$ are normal.

Two possibilities may occur:
(1) $d_{1} d_{1}^{*}=d_{i} d_{i}^{*}$ for all j. Then $D=k D_{\mu}$ where k is a positive real scalar and D_{μ} is a unitary diagonal matrix. Therefore,

$$
D_{\mu}^{*}\left(D B_{1}\right) D_{\mu}=D_{\mu}^{*}\left(k D_{\mu} B_{1}\right) D_{\mu}=k B_{1} D_{\mu}=B_{1} k D_{\mu}=B_{1} D
$$

is normal since it is unitarily similar to a normal matrix. Since $B_{1} D$ is normal, $B A$ is normal.
(2) $d_{1} d_{1}^{*} \neq d_{j} d_{i}^{*}$ for some j. In this case for some $l, 1 \leq l<n$, it is true that $d_{1} d_{1}^{*}=d_{2} d_{2}^{*}=\cdots=d_{l} d_{l}^{*}>d_{l+1} d_{l+1}^{*} \geq \cdots \geq d_{n} d_{n}^{*}$. Since $B_{1}=\left(b_{r s}\right)$ is normal so that $B_{1} B_{1}^{*}=B_{1}^{*} B_{1}$, the following relations hold:

$$
\begin{equation*}
\sum_{i=1}^{n} b_{i i} b_{i i}^{*}=\sum_{i=1}^{n} b_{i j} b_{i i}^{*} \tag{1}
\end{equation*}
$$

$$
(j=1,2, \cdots, n)
$$

and since $D B_{1}=\left(d_{r} b_{r s}\right)$ is normal,

$$
\begin{equation*}
d_{i} d_{i}^{*} \sum_{i=1}^{n} b_{i i} b_{i i}^{*}=\sum_{i=1}^{n} d_{i} d_{i}^{*} b_{i j} b_{i j}^{*} \quad(j=1,2, \cdots, n) \tag{2}
\end{equation*}
$$

Received February 7, 1948; in revised form April 5, 1948.

