THE ADDITIVE PROPERTIES OF INTEGERS OF A CERTAIN CLASS

By L. Mirsky

Evelyn and Linfoot [3], [4], [5], [6], [7] obtained an asymptotic formula for the number of representations of a large integer n as the sum of $s r$-free integers, and their results were later sharpened by Barham and Estermann [1] and by me [8]. (If $r \geq 2$, an integer is called r-free if it is not divisible by the r-th power of any prime.) In the present note I shall be concerned with a more general problem. The methods I use are different from those introduced by the other authors in dealing with the original problem of r-free integers, though the argument in §2 owes something to a paper by Estermann [2].

Let \mathbf{A} be any given class (finite or infinite) of integers greater than 1 , and such that any two integers belonging to it are coprime. Members of \mathbf{A} will be called a-numbers, and the letter a will be reserved for them. A number will be called \mathbf{A}-free if it is not divisible by any a-number. For $s \geq 2$ we shall denote by $Q(n)=Q(n, \mathbf{A}, s)$ the number of representations of n (order being relevant) as the sum of $s \mathrm{~A}$-free numbers. Our object is to investigate the behavior of $Q(n)$ as $n \rightarrow \infty$.

It will be assumed throughout $\S \S 1-3$ that the series

$$
\begin{equation*}
\sum_{a} 1 / a \tag{1}
\end{equation*}
$$

converges, and in $\S 1$ I shall obtain an asymptotic formula for $Q(n)$. If, furthermore, (1) converges sufficiently rapidly (i.e., if the frequency of a-numbers is not too great), the error term in this formula can be sharpened considerably; this sharpening will be effected in §2. In §3 I shall investigate the average order of the error term in the asymptotic formula for $Q(n)$. Finally in $\S 4$ the case when (1) diverges will be briefly considered. The problem is then naturally much more difficult, and I am at present only able to obtain a rather inadequate upper estimate for $Q(n)$.

I wish to express my thanks to Dr. R. Rado for valuable suggestions and helpful criticism.

1. Notation. Let $P_{1}(\xi)$ and $P_{2}(\xi)$ be two propositions concerning a variable ξ. Then

$$
P_{1}(\xi) \quad\left(P_{2}(\xi)\right)
$$

means that for every ξ for which $P_{2}(\xi)$ holds, $P_{1}(\xi)$ holds also;

$$
P_{1}(\xi) \quad\left[P_{2}(\xi)\right]
$$

means that for some ξ for which $P_{2}(\xi)$ holds, $P_{1}(\xi)$ holds also.
Received September 30, 1947.

