A NORMAL FORM FOR MATRICES WHOSE ELEMENTS
ARE HOLOMORPHIC FUNCTIONS

By WirLiam G. LEAVITT

1. Introduction. A similarity transformation of a matrix A is a transforma-
tion of type T'AT, where T™" is the inverse of T. The algebraic theory of
similarity transformations of matrices over a field is the subject of considerable
literature, but much less is known of the similarity theory of matrices whose
elements are functions. Let A(2) = [a,;(2)] be an n-th order matrix each of
whose elements is a function of the complex variable z, with characteristic
equation

@) |4 —yI| = 0.

I is the identity matrix I = [4;;] where §,;; are the Kronecker symbols. The
present paper is to consider transformations in a closed bounded region R such
that, in and on the boundary of R,

(a) Each element of A(z) and each root of (1) is a holomorphic function.

Designate the distinct roots (that is, roots not identically equal over R) of
(1) as y;(2),7 = 1, --- , m, and let their respective multiplicities be h; , so that

T h; = n. By condition (a) the v,(2) are functions holomorphic over R.

The purpose of this paper is the consideration of the problem of constructing
a normal form to which A (z) is reducible by a similarity transformation. The
principal result is the proof that there exists a transformation T(z), whose de-
terminant | T'(z) | is non-vanishing throughout R, which transforms A into the
normal form
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where all the elements under the main diagonal are zero, the ¢,; holomorphic
over R, and each v, repeated to its multiplicity h; .

The set of all functions holomorphic over R will first be shown to satisfy
the postulates of a principal ideal ring (§2). It then easily follows from known
algebraic theorems that there exists a matrix S(z) of holomorphic functions
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