THE ZEROS OF THE DERIVATIVES OF THE REAL ELLIPTIC ϑ_{3}-FUNCTION

By Philip Hartman

1. Let
(1)

$$
\theta_{q}(x)=1+2 \sum_{n=1}^{\infty} q^{n^{2}} \cos n x
$$

for real x and for

$$
\begin{equation*}
0<q<1 \tag{2}
\end{equation*}
$$

denote the elliptic theta-function ϑ_{3} (with the unit of the independent variable changed so that the period is 2π, rather than 1). It has recently been shown [2] that, for every q on the interval (2), the first and second derivatives of the positive function (1) have exactly two (simple) zeros on any period, say $-\pi<$ $x \leq \pi$. The object of this paper is to investigate the zeros of the higher order derivatives of $\theta_{q}(x)$.

Let $\theta_{g}^{m}(x)$ denote the m-th derivative of (1); so that,

$$
\begin{equation*}
\theta_{Q}^{2 m}(x)=2(-1)^{m} \sum_{n=1}^{\infty} n^{2 m} q^{n^{2}} \cos n x \quad(m=1,2, \cdots) \tag{m}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{a}^{2 m+1}(x)=2(-1)^{m} \sum_{n=1}^{\infty} n^{2 m+1} q^{n^{2}} \sin n x \quad(m=0,1, \because) . \tag{m}
\end{equation*}
$$

Since $\theta_{a}^{m}(x)$ is a periodic function, its number $N_{m}(q)$ of zeros (counting multiplicities) on a period $-\pi<x \leq \pi$ is even. Between every two zeros of $\theta_{a}^{m}(x)$, there is at least one zero of $\theta_{q}^{m+1}(x)$ by Rolle's theorem, so that $N_{m+1}(q) \geq$ $N_{m}(q)-1$. But since $N_{m}(q)$ is even for every m,

$$
\begin{equation*}
N_{m+1}(q) \geq N_{m}(q) \quad(0<q<1) \tag{5}
\end{equation*}
$$

It follows (see [1]) from the general theories of either Sturm or Laguerre that $N_{m}(q)$ is a non-decreasing step-function of q on the interval (2). It will be shown that, if $m>0$, then:
(i $\left.i_{m}\right) N_{2 m-1}(q)=N_{2 m}(q)$ for $0<q<1$;
(ii) $N_{2 m}(q)$ attains exactly m values, namely, 2, 4, $\cdots, 2 m$;
(iii) $N_{2 m}(q)$ is continuous from the right (and, if $m>1$, its discontinulties separate and are separated by those of $\left.N_{2 m-2}(q)\right)$;
(iv_{m}) the power series
Received December 18, 1947.

