RINGS WITH ADDITIVE GROUP WHICH IS THE DIRECT SUM OF CYCLIC GROUPS

By Ross A. Beaumont

1. Introduction. The purpose of this note is to construct all rings which have as their additive group, a given additive abelian group which is the direct sum of cyclic groups. The method is an easy generalization of the usual method of determining the algebras over a vector space. (See [1].)

If an abelian group G contains a set of subgroups $\left[H_{i}\right]$ such that (i) $H_{t} \cap$ $\left\{\left[H_{i}\right]\right\}=0$ for $i \neq t$, and (ii) any element g in G can be written as a finite sum, $g=h_{i_{1}}+h_{i_{2}}+\cdots+h_{i_{k}}$, where $h_{i_{j}}$ is in $H_{i_{j}}$, then G is the direct sum of the groups H_{i}. In particular, if the H_{i} are cyclic groups, their generators u_{i} are a basis for G over the domain of integers which is an operator domain for every additive abelian group.

Infinite cyclic groups will be said to have order zero, and congruences modulo zero are ordinary equalities. We will define the symbol ($a_{1}, a_{2}, \cdots, a_{k}$) to be zero if $a_{i}=0, i=1, \cdots, k$, and to be the greatest common divisor of the non-zero a_{i} if not all of the a_{i} are zero.
2. The construction of rings with given additive group. Let G be an additive abelian group which is the direct sum of cyclic groups $\left\{u_{i}\right\}$ of order t_{i}. Any two elements g, f in G have the following representations which are not necessarily unique:

$$
g=\sum_{i} a_{i} u_{i}, \quad f=\sum_{i} b_{i} u_{i}
$$

where the a_{i} and b_{i} are integers such that almost every $a_{i} \equiv 0\left(\bmod t_{i}\right)$ and almost every $b_{i} \equiv 0\left(\bmod t_{i}\right)$.

Theorem. G is made into a ring if, and only if, for given integers $g_{i j k}$, multiplication is defined by the formula

$$
\begin{equation*}
g f=\left(\sum_{i} a_{i} u_{i}\right)\left(\sum_{i} b_{i} u_{j}\right)=\sum_{i j k} g_{i j k} a_{i} b_{j} u_{k} \tag{1}
\end{equation*}
$$

such that,
(a) for a given i and j almost every $g_{i j k} \equiv 0\left(\bmod t_{k}\right)$;
(b) $\sum_{k} g_{i j k} g_{k m p} \equiv \sum_{k} g_{j m k} g_{i k p}\left(\bmod t_{p}\right)$;
(c) $g_{i j k} \equiv 0\left(\bmod t_{k} /\left(t_{i}, t_{i}, t_{k}\right)\right)$, where $\left(t_{i}, t_{i}, t_{k}\right)$ is the greatest common divisor of the non-zero t 's in the symbol and $0 /(0,0,0)=1$.

Received May 31, 1947; in revised form January 27, 1948. Presented to the American Mathematical Society, April 26, 1947.

