THE NUMBER OF REPRESENTATIONS OF A POLYNOMIAL IN CERTAIN SPECIAL QUADRATIC FORMS

BY L. CARLITZ AND ECKFORD COHEN

1. Introduction. The problem of determining the number of representations of a polynomial in $GF[p^n, x]$ in certain special quadratic forms has been considered in several previous papers (see for example [1], [3]). In [1] it was shown that the "singular series" for polynomials [1; (1.3)] furnishes the solution for this problem in a number of cases. However, in all cases considered heretofore, the coefficients of the forms in question were assumed to be elements of $GF(pⁿ)$. In this paper we shall discuss forms involving polynomial coefficients of the first degree.

More precisely, we consider the following problem. Let B_{ij} represent polynomials of $GF[p^n, x]$ of degree 0 or 1 and let α_i be non-zero elements of $GF(p^n)$ for all values δf i. Then we seek the number of solutions of

(1.1)
$$
\theta F = \alpha_1 X_1^2 + \cdots + \alpha_m X_m^2 + \sum_{i,j=1}^s B_{ij} Y_i Y_j
$$

in primary polynomials X_1 , \cdots , X_m of degree k, and arbitrary polynomials Y_1 , \cdots , Y_s of degree less than k, where $\theta = \alpha_1 + \cdots + \alpha_m$ for F primary, deg $F = 2k$, and θ arbitrary for F of degree less than $2k$. We assume that $m \geq 1$, and further, without loss of generality, that $s \geq 1$.

In §2, it is shown that the singular series furnishes the number of solutions of (1.1) under the assumptions stated above. The singular series for this
problem can be written
(1.2) $\mathfrak{S}(F; k, t, g) = p^{nk(t-2)} \sum |H|^{-t} \sum \epsilon(-FG, H)S(gG, H),$ problem can be written

$$
(1.2) \qquad \mathfrak{S}(F; k, t, g) = p^{nk(t-2)} \sum_{\substack{\deg H \leq k \\ H \text{ primary}}} |H|^{-t} \sum_{(G,H)=1} \epsilon(-FG, H)S(gG, H),
$$

(Note that H is restricted to primary values; this convention will be used throughout the paper.);

$$
(1.3) \t t = m + s,
$$

$$
(1.4) \qquad g = g(X_1, \cdots, X_m, Y_1, \cdots, Y_s) = \sum_{i=1}^m \alpha_i X_i^2 + \sum_{i,j=1}^s B_{ij} Y_i Y_j,
$$

and $S(gG, H)$ is the generalized Gauss sum defined by

(1.5)
$$
S(gG, H) = \sum_{X_i, Y_i \text{ (mod } H)} \epsilon(gG, H) \qquad (i = 1, \cdots, m; j = 1, \cdots, s),
$$

the X_i , Y_j running independently through complete residue systems (mod H). Notice that for

$$
g = \alpha_1 X_1^2 + \cdots + \alpha_t X_t^2,
$$

Received December 2, 1947.