A RENEWAL THEOREM

By David Blackwell

1. Introduction. Let x_{i} be independent non-negative chance variables with identical distributions. The asymptotic behavior of the expected number $U(T)$ of sums $s_{k}=x_{1}+\cdots+x_{k}$ lying in the interval $(0, T)$ has been studied by Feller [2], using the integral equation of renewal theory and the method of Laplace transforms. Recently Doob [1] has obtained as a consequence of general theorems on stationary Markov processes the following result: if the distribution of some s_{k} is non-singular, then $U(T+h)-U(T) \rightarrow h / E\left(x_{1}\right)$ as $T \rightarrow \infty$ for every $h>0$. Täcklind [4] has obtained an excellent estimate for $U(T)$ itself: when the k-th moment of x_{1} exists for some $k>2$ and the values of x_{1} are not all integral multiples of some fixed constant, his estimate shows at once that $U(T+h)-U(T) \rightarrow h / E\left(x_{1}\right)$.

In this paper we shall prove the following
Theorem. Unless all values of x_{1} are integral multiples of some fixed constant,

$$
U(T+h)-U(T) \rightarrow h / E\left(x_{1}\right) \quad(T \rightarrow \infty)
$$

for every $h>0$. (If $E\left(x_{1}\right)=\infty$, then $h / E\left(x_{1}\right)$ is to be interpreted as zero.)
The case excluded in our theorem is essentially that of integral-valued chance variables; here a corresponding result (with minor complications due to periodicity) has been obtained by Feller (oral communication), using a general theorem on power series due to Erdös, Feller, and Pollard. Thus our result complements that of Feller: together they describe the limits of $U(T+h)-U(T)$ in every case. Our principal tool (Theorem 1) is obtained by the method of Erdös, Feller, and Pollard; it is in a sense weaker than a result of Doob [1], but suffices to prove our theorem (which implies both results, in the case here considered).
2. Definitions and preliminaries. For any chance variable z and any $h>0$ we define $N_{k}(z, h)$ as the number of sums $x_{k+1}, x_{k+1}+x_{k+2}, \cdots$ lying in the interval $z \leq s<z+h$, and define $N(a, h)=N_{0}(a, h)$. For any constants a, h the chance variables $N_{k}(a, h)$ have distributions independent of k; we define $U(a, h)=E\left[N_{k}(a, h)\right]$. Thus $U(0, T)$ is the function $U(T)$ defined in the introduction: the expected number of sums $s_{k}=x_{1}+\cdots+x_{k}$ for which $0 \leq s_{k}<$ T. We shall sometimes write $U(z, h)$ where z is a chance variable; $U(z, h)$ is then itself a chance variable, assuming the value $U(a, h)$ when $z=a$.

Lemma 1. $U(a, h)$ is finite for all a, h.
This follows immediately from a result of Stein [3], who has shown that $P\left\{s_{k}<b\right\} \rightarrow 0$ exponentially as $k \rightarrow \infty$ for every constant b.

Received September 18, 1947.

