THE ASYMPTOTIC NATURE OF SOLUTIONS OF LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

By NORMAN LEVINSON

1. We shall prove several theorems on the asymptotic behavior of linear systems of differential equations. We use the notation x for a column vector with components (x_1, \dots, x_n) . All matrices we consider will be square and have complex elements. E is the unit matrix. If A is a matrix then its determinant is |A|. A typical result is:

THEOREM 1. Let

(1.0)
$$\frac{dx}{dt} = (A + \Phi + R)x,$$

where (1) A is a constant matrix such that $|A - \mu E| = 0$ has n simple roots μ_i ; (2) Φ is a matrix such that as $t \to \infty$, $\Phi \to 0$ and moreover all the elements of $\Phi, \phi_{ij}(t)$, satisfy

(1.1)
$$\int_{-\infty}^{\infty} |d\phi_{ij}/dt| dt < \infty \qquad (i, j = 1, 2, \cdots, n);$$

(3) the elements of R, $r_{ii}(t)$, all satisfy

(1.2)
$$\int_{-\infty}^{\infty} |r_{ij}(t)| dt < \infty.$$

 Φ and R are complex-valued matrices. Let the roots of $|A + \Phi - \lambda E| = 0$ be denoted by $\lambda_i(t)$. Then $\lambda_i(t) \to \mu_i$ as $t \to \infty$. Furthermore if the real parts of μ_i are not all distinct let $D_{ij}(t) = \text{Re} (\lambda_i(t) - \lambda_j(t))$ satisfy one of the following three conditions for each i and j:

(1.3)
$$\limsup_{A\to\infty} \left| \int_{t_{\circ}}^{A} D_{ij}(t) dt \right| < \infty,$$

(1.4)
$$\lim_{A \to \infty} \int_{t_0}^A D_{ij}(t) dt = \infty, \qquad \int_B^A D_{ij}(t) dt > -c \qquad (A > B),$$

(1.5)
$$\lim_{A \to \infty} \int_{t_0}^{A} D_{ij}(t) dt = -\infty, \qquad \int_{B}^{A} D_{ij}(t) dt < c \qquad (A > B),$$

Received September 12, 1947.