SKEWLY CEVIAN TETRAHEDRONS

By N. A. Court

1. Intersection of a quadric with a tetrahedron.

a. Theorem. If six pairs of points marked on the edges of a tetrahedron are such that the six points lying in each of three faces of the tetrahedron belong to a conic, (i) the same is true of the points lying in the fourth face, and (ii) the twelve points lie on a quadric surface.

Let $X^{\prime}, X^{\prime \prime} ; Y^{\prime}, Y^{\prime \prime} ; Z^{\prime}, Z^{\prime \prime} ; U^{\prime}, U^{\prime \prime} ; V^{\prime}, V^{\prime \prime} ; W^{\prime}, W^{\prime \prime}$ be pairs of points situated on the edges $B C, C A, A B, D A, D B, D C$, of a tetrahedron $(T)=A B C D$, and suppose that the points in each of the faces $D B C, D C A, D A B$, lie on a conic.

The nine points $U^{\prime}, U^{\prime \prime} ; V^{\prime}, V^{\prime \prime} ; W^{\prime}, W^{\prime \prime} ; X^{\prime}, Y^{\prime}, Z^{\prime}$, no three of which are collinear and no six coplanar, determine a quadric (Q). The six points in the face $D B C$ lie on a conic, by assumption, and five of them lie on (Q), by construction, hence the sixth point, $X^{\prime \prime}$, also lies on (Q). Similarly for $Y^{\prime \prime}, Z^{\prime \prime}$, in the faces $D C A, D A B$. Hence all the twelve points lie on (Q), and therefore the points in the face $A B C$ also lie on a conic. Hence the proposition.

Otherwise. The two conics in the two faces $D A B, D A C$ have a pair of points $U^{\prime}, U^{\prime \prime}$ in common, hence the two conics lie on an infinite number of quadric surfaces forming a pencil whose base is the degenerate skew quartic curve formed by the two conics. Let (Q) be the quadric of the pencil which passes through the point X^{\prime}. The plane $D B C$ cuts (Q) along a conic which has five points in common with the given conic in that plane, hence the sixth point $X^{\prime \prime}$ also lies on both conics and therefore lies on (Q).
b. As an obvious consequence we have the

Theorem. On three concurrent edges $D A, D B, D C$, of a tetrahedron $(T)=$ $A B C D$ are marked three pairs of points $U^{\prime}, U^{\prime \prime} ; V^{\prime}, V^{\prime \prime} ; W^{\prime}, W^{\prime \prime}$. Three arbitrary conics drawn through the three tetrads of points $U^{\prime}, U^{\prime \prime}, V^{\prime}, V^{\prime \prime} ; V^{\prime}, V^{\prime \prime}, W^{\prime}, W^{\prime \prime} ;$ $W^{\prime}, W^{\prime \prime}, U^{\prime}, U^{\prime \prime}$, meet the third edge of the respective face of (T) in three pairs of points which lie on a conic.
c. It may be of some interest to observe that this proposition is an extension, or a generalization of Desargues' theorem on perspective triangles. Indeed, among the conics passing through the four points $U^{\prime}, U^{\prime \prime}, V^{\prime}, V^{\prime \prime}$ we may consider the degenerate conic constituted by the lines $U^{\prime} V^{\prime}$ and $U^{\prime \prime} V^{\prime \prime}$; let Z^{\prime}, $Z^{\prime \prime}$ be their respective traces on the edge $A B$. Similarly let the lines $V^{\prime} W^{\prime}$, $V^{\prime \prime} W^{\prime \prime}$ meet $B C$ in $X^{\prime}, X^{\prime \prime}$, and the lines $W^{\prime} U^{\prime}, W^{\prime \prime} U^{\prime \prime}$ meet $C A$ in $Y^{\prime}, Y^{\prime \prime}$. The conic on which the six points lie is in the present case degenerate, for the points $X^{\prime}, Y^{\prime}, Z^{\prime}$ lie on the trace of the plane $U^{\prime} V^{\prime} W^{\prime}$ in the plane $A B C$, and the points $X^{\prime \prime}, Y^{\prime \prime}, Z^{\prime \prime}$ lie on the line of intersection of the planes $U^{\prime \prime} V^{\prime \prime} W^{\prime \prime}$,

Received August 2, 1947.

