NOTE ON THE STRONG SUMMABILITY OF FOURIER SERIES

By Ching-Tsün Loo

1. Let p be a number not less than 1. Let $f(u) \varepsilon L^{p}(-\pi, \pi)$ and be periodic with period 2π. Let $S_{n}(u), n=0,1,2, \cdots$, denote the n-th partial sum of the Fourier series of f. Let x be a fixed point, and let

$$
S_{n}=S_{n}(x), \quad \phi(u)=\frac{1}{2}\{f(x+u)+f(x-u)-2 S\}
$$

Then, if

$$
\begin{equation*}
1<p, \quad \int_{0}^{t}|\phi(u)|^{p} d u=o(t) \quad(t \rightarrow+0) \tag{1.1}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\sum_{m=0}^{n}\left|S_{m}-S\right|^{r}=o(n) \tag{1.2}
\end{equation*}
$$

$$
(n \rightarrow \infty)
$$

for every positive r (see [2], [1], [6]). Further, Hardy and Littlewood [3] have shown that, if

$$
\begin{equation*}
p=1, \quad \int_{0}^{t}|\phi(u)| d u=o(t) \tag{1.3}
\end{equation*}
$$

then

$$
\sum_{m=0}^{n}\left|S_{m}-S\right|^{r}=\left\{\begin{array}{lr}
o\left[n(\log n)^{r / 2}\right] & (0<r \leq 2) \\
o\left[n(\log n)^{r-1}\right] & (2<r)
\end{array}\right.
$$

The author [4] has proved that, if (1.3) holds, then

$$
\sum_{m=0}^{n}\left|S_{m^{k}}-S\right|^{2}=o(n \log n)
$$

for every integer $k \geq 2$. The author [5] has also proved that, if (1.1) holds, then

$$
\begin{equation*}
\sum_{m=0}^{n}\left|S_{m^{k}}-S\right|^{2}=o(n) \tag{1.4}
\end{equation*}
$$

for every integer k such that $2 \leq k<p$. The object in this note is to extend this last result. We prove the following theorem.

Theorem. Let the conditions (1.1) hold. Then (1.4) holds for every integer $k \geq 2$.

Received December 18, 1945. The author wishes to express his indebtedness to the referee for his assistance in connection with the editing of this paper.

