CERTAIN PERIODIC SEQUENCES OF LAPLACE OF PERIOD SIX IN ORDINARY SPACE

By S. Finikoff

If a one-to-one point correspondence is established between two surfaces (\mathbf{M}) , (\mathbf{M}') in ordinary space, there exists a net of lines upon each surface called a d-net whose tangents intersect the corresponding tangents of corresponding lines on the other surface. In the present paper we shall discuss the corresponding d-nets which are asymptotic on (\mathbf{M}) and conjugate on (\mathbf{M}') , in short a-c d-nets.

Given an arbitrary surface (\mathbf{M}) , there is a family of surfaces (\mathbf{M}') depending on four arbitrary functions of a variable; each surface (\mathbf{M}') is in point correspondence with (\mathbf{M}) whose d-nets are asymptotic upon (\mathbf{M}) and conjugate upon (\mathbf{M}') . The developables of the congruence (\mathbf{MM}') correspond to the asymptotics of (\mathbf{M}) .

To a given surface. (\mathbf{M}) corresponds a family of congruences $(\mathbf{MM'})$ depending on two arbitrary functions of one variable; each congruence is conjugate to the asymptotics of (\mathbf{M}) and sustains a family of $(\mathbf{M'})$ depending on two arbitrary functions of a variable.

Given an arbitrary surface (\mathbf{M}') there exists a family of conjugate d-nets depending on four arbitrary functions of one variable whose corresponding d-nets are asymptotic.

If the points of intersection of the corresponding tangents of two d-nets are the foci \mathbf{M}_1 , \mathbf{M}_2 of conjugate tangents $\mathbf{M'M}_1$, $\mathbf{M'M}_2$, the corresponding rays $\mathbf{MM'}$, $\mathbf{M}_1\mathbf{M}_2$ are reciprocal polar lines with respect to the Darboux quadrics at the point \mathbf{M} of (\mathbf{M}). The d-net of ($\mathbf{M'}$) is harmonic (see [2]). If the points \cdots , \mathbf{M}_1^* , \mathbf{M}_2 , $\mathbf{M'}$, \mathbf{M}_1 , \mathbf{M}_2^* , \cdots describe the focal surfaces of the Laplace sequence with respect to the harmonic d-net of ($\mathbf{M'}$), the points \mathbf{M}_1^* , \mathbf{M}_1 are situated on the asymptotic tangent \mathbf{MM}_u of (\mathbf{M}); \mathbf{M}_2 , \mathbf{M}_2^* on the asymptotic tangent \mathbf{MM}_v .

The above mentioned surfaces form a family depending on six arbitrary functions of one variable. To each surface (\mathbf{M}) of this family there corresponds one and only one surface (\mathbf{M}') , but there exists a family of surfaces (\mathbf{M}) depending on four arbitrary functions of a variable such that to each surface (\mathbf{M}) there correspond two surfaces (\mathbf{M}') , $(\mathbf{M}^{*\prime})$.

The sequence of Laplace with respect to the d-nets of (M'), $(M^{*'})$ coincide,

Received September 20, 1946.