THE CHORDAL HYPERSURFACES OF A RATIONAL CURVE

By R. K. Wakerling

1. The totality of k-spaces which are $(k+1)$-secants of a rational curve in a p-dimensional space $(p>2 k+1)$ form an algebraic variety $V_{2 k+1}^{n}$ of dimension $2 k+1$ and order n. The present paper is concerned with the study of some properties of this variety and with its representation upon a linear $(2 k+1)$-space.

The topic of chordal varieties bears a close relationship to several important geometrical subjects such as line complexes, Cremona n-ic transformations, and systems of quadrics in multi-dimensional spaces. There are also interesting connections with the theory of invariants, as pointed out by P. H. Schoute [5]. Some of the properties of $V_{2 k+1}^{n}$ and its relation to other geometrical topics have been investigated by B. Levi [2], A. Tanturri [7], H. Telling [8], and C. Segre [6]. More recently T. G. Room [4; §11.7] has discussed the subject briefly in connection with his work on determinantal loci.
2. A rational curve C^{r} of order r in a space S_{p} of dimension $p<r$ and its associated $(k+1)$-secant k-spaces may be regarded as the projection of a rational, normal curve of order r in an r-space S_{r} together with its corresponding multisecant spaces. Without loss of generality we may then restrict our attention to the secant loci connected with a normal, rational curve C^{r} in S_{r}. The curve C^{r} may be represented parametrically in the form

$$
\begin{equation*}
x_{0}: x_{1}: x_{2}: \cdots: x_{r}=1 \quad t: t^{2}: \cdots: t^{r} \tag{2.1}
\end{equation*}
$$

from which it is evident that C^{r} lies on the $\binom{r}{2}$ linearly independent quadric hypersurfaces obtained by equating to zero all the second order determinants. of the matrix

$$
\left\|\begin{array}{llll}
x_{0} & x_{1} & x_{2} \cdots x_{r \cdots 2} & x_{r-1} \tag{2.2}\\
x_{1} & x_{2} & x_{3} \cdots x_{r-1} & x_{r}
\end{array}\right\|
$$

This matrix puts in evidence two well-known projective generations of C^{r} : (see [4;219]) as the intersection of the r projectively related pencils of hyperplanes given by

$$
\begin{equation*}
x_{0}+t x_{1}=0, \quad x_{1}+t x_{2}=0, \quad \cdots, \quad x_{r-1}+t x_{r}=0 \tag{2.3}
\end{equation*}
$$

and as the locus of the points of intersection of corresponding lines determined by sets of corresponding hyperplanes of the two systems

Received July 10, 1946; in revised form March 17, 1947.

