THE DETERMINATION OF CONNECTED LINEAR SECTIONS

By F. A. Valentine

In 1913 Brunn [2] established the following theorem about sets in an n dimensional Euclidean space $\mathscr{R}_{n}, n \geq 2$.

Theorem (Brunn). Let x be a point in $\mathfrak{R}_{n}, n \geq 2$, which has the property that each line through x intersects a bounded closed set S in a non-empty connected set. The Kerneigebiet is defined to be the set of all such points x having the above property.

Then the Kerneigebiet is a closed, convex set which is contained in S.
One can say that the set S in the above theorem is star-like [1;3] relative to each point of the Kerneigebiet. Hence S is a continuum when the Kerneigebiet is not null. In the following theory the set S is to be a continuum (a compact, connected set) in $\mathscr{R}_{n}, n \geq 2$. A hyperplane L is the ($n-1$)-dimensional set of points $x \varepsilon \mathscr{R}_{n}$ satisfying a linear equation $f(x)=c$, and the intersection $L \cdot S$ determined by L is called a linear section of S. In order to generalize the concepts developed by Brunn, the following theorem provides our point of departure.

Theorem 1. Consider a property P on hyperplanes in $\mathscr{R}_{n}, n \geq 2$. Let x be a point in \mathfrak{R}_{n} such that each hyperplane through x has property P, and designate the set of all such points x by K.

Then each component of K is a convex set.
Proof. Let x_{1} and x_{2} be any two points in a component C of K, and designate the straight line segment joining x_{1} and x_{2} by l_{12}. Choose any point r ع l_{12}, and let L be any hyperplane passing through r. If $l_{12} \subset L$, then $C \cdot L \neq 0$. If $l_{12} \subset L$, then x_{1} and x_{2} are on opposite sides of L. Since C is connected, we must have $L \cdot C \neq 0$. Hence in all cases $K \cdot L \neq 0$, so that L must have property P. Since r was any point on l_{12}, and since L was any hyperplane through r, $l_{12} \subset C$. Consequently C is a convex set, and Theorem 1 has been proved.

Remark. It should be observed that Theorem 1 also holds in a linear space.
In all of the following theorems the set K has the following definition.
Definition 1. Suppose S is a continuum in $\mathscr{R}_{n}, n \geq 2$. Let x be a point in \mathscr{R}_{n} such that each hyperplane L through x intersects S in a connected set, and designate the set of all such points x by K. (A linear section $L \cdot S$ may or may not be empty.)

This definition differs from that for the Kerneigebiet in that empty intersections are admissible. Also hyperplanes replace the role played by straight lines.

Received April 1, 1947; presented to the Society, April 26, 1947.

