CAUCHY PRODUCTS OF DIVISOR FUNCTIONS IN $GF[p^n, x]$

By L. CARLITZ AND ECKFORD COHEN

1. **Introduction.** Let $GF[p^n, x]$ denote the ring of polynomials in an indeterminate x with coefficients in the Galois field $GF(p^n)$. In this paper capital italics will denote polynomials in $GF[p^n, x]$ unless otherwise stated. By sgn A will be meant the coefficient of the highest power of x in A; if sgn A = 1, A is called *primary*.

A single-valued function $\phi(A)$ defined for all $A \in GF[p^n, x]$ will be called arithmetic; the values $\phi(A)$ are assumed to be complex numbers. Let ϕ and ψ be given arithmetic functions and F a given polynomial of degree f. Then we consider three types of composition, which will be referred to as Cauchy products C_1 , C_2 , C_3 :

$$(1.1) C_i: \phi \cdot \psi = \sum_i \phi(A) \psi(B) = \zeta(F) (i = 1, 2, 3).$$

In each case the summation is over polynomials A, B such that A + B = F, with the following restrictions:

Let r denote a fixed non-negative integer and α and β fixed non-zero elements of $GF(p^n)$, where $\alpha + \beta = \operatorname{sgn} F$ if f = r and $\alpha + \beta = 0$, $\operatorname{sgn} F$ arbitrary if f < r. Then under C_1 , A and B range over polynomials of degree r with $\operatorname{sgn} A = \alpha$, $\operatorname{sgn} B = \beta$ and A + B = F. Under C_2 , F is assumed $\neq 0$, of degree r, and the summation in (1.1) is over A of degree r and B of degree less than r such that A + B = F. Under C_3 , F is assumed to be of degree less than r, and A and B range over polynomials of degree less than r such that A + B = F. By \sum_i we shall mean a summation corresponding to C_i (i = 1, 2, 3); a symbol such as $\sum_{2,3}$ will be used to indicate summations with respect to either C_2 or C_3 .

The Cauchy products just defined are evidently analogous to the ordinary Cauchy product (see, for example, E. T. Bell [1]). However, as we shall see, there are important differences; in particular, in the polynomial case zero divisors occur—that is, $\zeta(F)$ in (1.1) may be identically zero, even though neither ϕ nor ψ is zero. For other properties see the end of §§2, 5.

In this paper we consider only a special class of arithmetic functions which we shall call divisor functions and which we shall now define. We first introduce certain notation to be used throughout the paper. If M denotes a polynomial in $GF[p^n, x]$, we define as in [2]:

(1.2)
$$\delta_{z}(M) = \begin{cases} \sum_{Z \mid M}^{\deg Z - z} 1 & (z \geq 0), \\ 0 & (z < 0), \end{cases}$$

Received June 20, 1947.