EXTENDING A METRIC

By R. H. Bing

In this paper we shall prove a covering theorem (Theorem 1) and apply it to get three metrization theorems (Theorems 2, 3, 5).

A topological space is metric provided that for each point P and each point Q, there exists a number $d(P, Q)$ such that
(a) $d(P, Q)=0$ if and only if $P=Q$,
(b) $d(P, Q)=d(Q, P)$ (symmetry),
(c) $d(P, Q) \leq d(P, R)+d(R, Q)$ for each point R (triangle condition), and
(d) the function $d(x, y)$ preserves limit points.

By (d) we mean that P is a limit point of the set M if and only if for each positive number ϵ, there is a point Q of $M-M \cdot P$ such that $d(P, Q)$ is less than ϵ. The number $d(P, Q)$ is called the distance between P and Q. The distance function $d(x, y)$ of a space is called the metric of the space.

The distance between two points is a positive number. This may be seen by letting P equal Q in (c) and applying (a) and (b). Lindenbaum [7] has shown that we may omit (b) and substitute
$\left(\mathrm{c}^{\prime}\right) d(P, Q) \leq d(P, R)+d(Q, R)$
for (c). Then (b) and (c) follow from (a) and (c'). Birkhoff [3; 466] uses the inequality
$\left(\mathrm{c}^{\prime \prime}\right) d(P, Q) \leq d(Q, R)+d(R, P)$
in place of (c^{\prime}) and shows that (b) follows from (a) and ($\mathrm{c}^{\prime \prime}$).

A covering theorem. The theorem in this section may be useful in studying a topological space some of whose properties are defined by means of a sequence of collections of sets covering the space. A space satisfying R. L. Moore's Axiom $1[8]$ is such a space. In particular, we shall show that the theorem may be used in solving three metrization problems.

A collection G of point sets is coherent provided that each proper subcollection G^{\prime} of G contains an element which intersects an element of $G-G^{\prime}$.

Theorem 1. Suppose that r is a positive integer and H_{1}, H_{2}, \cdots are collections of sets such that each pair of points that can be covered by a coherent collection of r or fewer elements of H_{i+1} can be covered by an element of H_{i}. If P and Q are two points whose sum cannot be covered by any element of H_{s} but which can be covered by a coherent collection of sets h_{1}, h_{2}, \cdots, and h_{n} belonging to $H_{\alpha(1)}, H_{\alpha(2)}, \cdots$, and $H_{\alpha(n)}$ respectively, then

$$
\begin{equation*}
2\left(1 / r^{\alpha(1)}+1 / r^{\alpha(2)}+\cdots+1 / r^{\alpha(n)}\right)>1 / r^{s} . \tag{1}
\end{equation*}
$$

Received January 14, 1947; presented to the American Mathematical Society April 26, 1947.

