THE ASYMPTOTIC DENSITY OF CERTAIN SETS OF REAL NUMBERS

By A. Dvoretzky and Th. Motzkin

1. Introduction. Before describing our more general results we consider a particular case of special interest. Let P be any (Lebesgue-) measurable set of points on an oriented circle of unit length, and let p, $0 \le p \le 1$, denote the measure of P and q = 1 - p be the measure of the complementary set. Given a real non-negative number α we say that a point A of the circumference is an α -head if on every positively oriented arc AB commencing at A and terminating at B the ratio of the measure of points of P to the measure of points of the complementary set is greater than α . If on every such arc the ratio is at least α we say that A is an α -head. Our main result may, in this particular case, be stated as follows:

THEOREM 1. For $0 < \alpha \le p/q$ the sets of α -heads and α^{\blacktriangle} -heads are measurable and the measure of each of them is $p - q\alpha$.

It is remarkable that the measure of the set of α -heads (or α^{\blacktriangle} -heads) is determined by the measure of P and is entirely independent of any other properties of P, i.e. of the distribution of its points on the circumference. (The set of α^{-} -heads is closed (see §2) and thus measurable; on the other hand the measurability of the set of α -heads necessitates a proof (except in the most simple cases e.g. if P consists of a finite number of arcs, when our entire argument can be greatly simplified).) This contrasts sharply with the situation in the corresponding discrete problem. This problem is treated in [1]. There P consists of p white and the complementary set of q black balls, and exact bounds for the numbers $N(\alpha)$ $(N(\alpha^{\blacktriangle}))$ of α -heads $(\alpha^{\blacktriangle}$ -heads) for given α , p, q are obtained. In general—the most notable exception for α -heads occurring when α is an integer—these numbers depend to a certain extent on the distribution of the white and black balls around the circumference. Moreover, when $p, q \to \infty$ while p/q tends to a finite limit $\lambda > \alpha$, the difference between max $N(\alpha^{\blacktriangle})$ and min $N(\alpha^{\blacktriangle})$ is not o(p). (For α -heads there is an exception for integral α when $\max N(\alpha) = \min N(\alpha)$.) Since the discrete problem is closely related to the ballot problem in the theory of probabilities, we restate Theorem 1 in the language of that theory:

If $0 < \alpha \le p/q$ then the probability of a point chosen at random on the circumference being an α -head (or an α^{\blacktriangle} -head) is $p - q\alpha$.

Instead of regarding P as a set of points on the circumference we could equally well look upon it as a set of real numbers having the property that whenever x belongs to P, so do all numbers x + n $(n = \pm 1, \pm 2, \cdots)$.

Received January 17, 1947.