SMALLEST FIELDS OVER WHICH EVERY POLYNOMIAL IS SOLVABLE BY RADICALS

By B. W. Brewer

Introduction. A polynomial $f(x)$ in a field K_{0} is said to be solvable by radicals over K_{0} if there exists a chain of fields $K_{0} \subset K_{1} \subset \cdots \subset K_{s}, K_{s} \supseteq W_{f}$, where K_{i} is pure and of prime degree over $K_{i-1}(i=1,2, \cdots, s)$ and W_{f} is the root field of $f(x)$ over $K_{0}[2 ;$ Def. 40]. A field over which every polynomial is solvable by radicals will be said to have the property S_{R} and we shall be concerned here with the existence of fields irreducible with respect to this property. Such fields must be absolutely algebraic (algebraic over the prime field) since the maximal absolutely algebraic subfield of a field having the property S_{R} likewise has this property. We shall see that there exists a smallest field of prime characteristic p having the property S_{R}, but though every field of characteristic zero having the property S_{R} has at least one subfield irreducible with respect to this property, these fields are not all pair-wise isomorphic.

1. The fields of prime characteristic. An absolutely algebraic field of prime characteristic is uniquely defined by its characteristic and absolute degree [9; 79-88]. We shall denote by $A_{p, m}$ the absolutely algebraic field of prime characteristic p and absolute degree m. If $m=\Pi q_{i}^{r_{i}}$ and $r_{i}=0$ for every $q_{i} \neq p$, and $r_{i}=\infty$ for $q_{i}=p$, we write $m=p^{\infty}$ and have

Theorem 1. The $A_{p, p \infty}$ is the smallest field of prime characteristic p having the property S_{R}, i.e., the $A_{p, p \infty}$ has the following properties:

1. The $A_{p, p \infty}$ has the property S_{R}.
2. The $A_{p . p \infty}$ is a subfield of every field of prime characteristic p having the the property S_{R}.

Proof. A necessary and sufficient condition that every cyclotomic polynomial in the $A_{p, m}$, whose roots are the $\varphi(n)$ distinct primitive n-th roots of unity, be solvable by radicals over the $A_{p, m}$ for every $n \not \equiv 0(\bmod p)$ is that m be divisible by p^{∞} [1; Theorem 8]. Since every finite algebraic extension of the $A_{p, m}$ is cyclotomic, this is, moreover, a necessary and sufficient condition that the $A_{p, m}$ have the property S_{R}. Hence in the continuum of absolutely algebraic fields $A_{p, m}$ of prime characteristic p having the property S_{R} obtained by letting the exponents $x_{i}(i \neq k)$ in $m=q_{1}^{x_{1}} q_{2}^{x_{2}} \cdots q_{k}^{x_{k}} \cdots$ (where $q_{k}=p$ and $x_{k}=\infty$) vary independently over the non-negative integers and the symbol ∞, the $A_{p, p \infty}$ is the smallest field having the property S_{R}. Since any field of prime characteristic p having the property S_{R} must contain as its maximal absolutely algebraic subfield one of the above continuum of fields, the $A_{p, p \infty}$ is, moreover, the smallest field of prime characteristic p having the property S_{R}.

Received September 3, 1946.

