SUMS OF AN EVEN NUMBER OF SQUARES IN $G F\left[p^{n}, x\right]$

By Eckford Cohen

1. Introduction. Let n be an arbitrary positive integer and p a positive (odd) prime. Then $G F\left(p^{n}\right)$ denotes the Galois field of order p^{n} and $G F\left[p^{n}, x\right]$ the ring of polynomials in an indeterminate x with coefficients in $G F\left(p^{n}\right)$. The purpose of this paper is to find the number of representations of a polynomial of $G F\left[p^{n}, x\right]$ as a sum of an even number of squares, subject to certain mild restrictions.

Let $\alpha_{1}, \cdots, \alpha_{2 s}$ be $2 s$ non-zero elements of $G F\left(p^{n}\right)$ and place

$$
\begin{equation*}
\epsilon=\alpha_{1}+\cdots+\alpha_{2 s} \tag{1.1}
\end{equation*}
$$

By a primary polynomial we mean a polynomial of $G F\left[p^{n}, x\right]$ in which the coefficient of the highest power of x is the unit element of the field.

The problem under consideration will be divided into two parts:
I. Suppose F is primary of even degree $2 k$ and $\epsilon \neq 0$. Then we want the number of solutions of

$$
\begin{equation*}
\epsilon F=\alpha_{1} X_{1}^{2}+\cdots+\alpha_{2 s} X_{2 s}^{2} \tag{1.2}
\end{equation*}
$$

in primary polynomials X_{i} of degree k. If F is arbitrary of degree less than $2 k$ and if $\epsilon=0$, then we want the number of solutions of

$$
\begin{equation*}
F=\alpha_{1} X_{1}^{2}+\cdots+\alpha_{2 s} X_{2 s}^{2} \tag{1.3}
\end{equation*}
$$

in primary polynomials of degree k.
II. Suppose F is primary of degree $2 k, m$ is an integer such that $2 s>m \geq 1$, and $\beta \neq 0$ where $\beta=\alpha_{1}+\cdots+\alpha_{m}$. We want the number of solutions of

$$
\begin{equation*}
\beta F=\alpha_{1} X_{1}^{2}+\cdots+\alpha_{2 s} X_{2 s}^{2} \tag{1.4}
\end{equation*}
$$

where X_{1}, \cdots, X_{m} are primary of degree k and $X_{m+1}, \cdots, X_{2 s}$ are arbitrary of degree less than k. On the other hand, if $\beta=0$ and F is arbitrary of degree less than $2 k$, we want the number of solutions of

$$
\begin{equation*}
F=\alpha_{1} X_{1}^{2}+\cdots+\alpha_{2 s} X_{2 s}^{2} \tag{1.5}
\end{equation*}
$$

where X_{1}, \cdots, X_{m} are primary of degree k and $X_{m+1}, \cdots, X_{2 s}$ are arbitrary of degree less than k.

Suppose M is an arbitrary polynomial of $G F\left[p^{n}, x\right]$. Using deg for degree, we define (see [3])

$$
\delta_{z}(M)=\left\{\begin{array}{cl}
\sum_{Z \backslash M}^{\mathrm{dog} Z-z} 1 & (z \geq 0) \tag{1.6}\\
0 & (z<\mathbf{G}
\end{array}\right.
$$

Received January 24, 1947; presented to the American Mathematical Society April 26, 1947.

