SUMS OF AN EVEN NUMBER OF SQUARES IN $GF[p^n, x]$

BY ECKFORD COHEN

1. Introduction. Let n be an arbitrary positive integer and p a positive (odd) prime. Then $GF(p^n)$ denotes the Galois field of order p^n and $GF[p^n, x]$ the ring of polynomials in an indeterminate x with coefficients in $GF(p^n)$. The purpose of this paper is to find the number of representations of a polynomial of $GF[p^n, x]$ as a sum of an even number of squares, subject to certain mild restrictions.

Let α_1 , \cdots , α_{2s} be 2s non-zero elements of $GF(p^n)$ and place

(1.1)
$$\epsilon = \alpha_1 + \cdots + \alpha_{2s}$$

By a primary polynomial we mean a polynomial of $GF[p^n, x]$ in which the coefficient of the highest power of x is the unit element of the field.

The problem under consideration will be divided into two parts:

I. Suppose F is primary of even degree 2k and $\epsilon \neq 0$. Then we want the number of solutions of

(1.2)
$$\epsilon F = \alpha_1 X_1^2 + \cdots + \alpha_{2s} X_{2s}^2$$

in primary polynomials X_i of degree k. If F is arbitrary of degree less than 2k and if $\epsilon = 0$, then we want the number of solutions of

(1.3)
$$F = \alpha_1 X_1^2 + \cdots + \alpha_{2s} X_{2s}^2$$

in primary polynomials of degree k.

II. Suppose F is primary of degree 2k, m is an integer such that $2s > m \ge 1$, and $\beta \ne 0$ where $\beta = \alpha_1 + \cdots + \alpha_m$. We want the number of solutions of

(1.4)
$$\beta F = \alpha_1 X_1^2 + \cdots + \alpha_{2s} X_{2s}^2,$$

where X_1, \dots, X_m are primary of degree k and X_{m+1}, \dots, X_{2s} are arbitrary of degree less than k. On the other hand, if $\beta = 0$ and F is arbitrary of degree less than 2k, we want the number of solutions of

(1.5)
$$F = \alpha_1 X_1^2 + \cdots + \alpha_{2s} X_{2s}^2$$

where X_1, \dots, X_m are primary of degree k and X_{m+1}, \dots, X_2 , are arbitrary of degree less than k.

Suppose M is an arbitrary polynomial of $GF[p^n, x]$. Using deg for degree, we define (see [3])

(1.6)
$$\delta_{z}(M) = \begin{cases} \sum_{Z \mid M}^{\text{deg} \ Z = z} 1 & (z \ge 0) \\ 0 & (z < 0), \end{cases}$$

Received January 24, 1947; presented to the American Mathematical Society April 26, 1947.