THE SUMMABILITY (A) OF THE SUCCESSIVELY DERIVED SERIES OF A FOURIER SERIES AND ITS CONJUGATE SERIES

By M. L. Misra

1. Let $f(\theta)$ be a function which is integrable (L) in $(-\pi, \pi)$ and defined outside this range by periodicity with a period 2π. Let the Fourier series of $f(\theta)$ be

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right) . \tag{1.1}
\end{equation*}
$$

Then the conjugate series of this Fourier series is

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(b_{n} \cos n \theta-a_{n} \sin n \theta\right) . \tag{1.2}
\end{equation*}
$$

The series

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{d^{r}}{d \theta^{r}}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right), \\
& \sum_{n=1}^{\infty} \frac{d^{r}}{d \theta^{r}}\left(b_{n} \cos n \theta-a_{n} \sin n \theta\right)
\end{aligned}
$$

are respectively the r-th derived series of the Fourier series (1.1) and its conjugate series (1.2).

We know that this function $f(\theta)$ possesses, at the point θ, the r-th generalized symmetric derivative denoted by $f_{(r)}(\theta)$, in the sense of de la Vallee-Poussin, if $f(\theta)$ admits, for small values of t, developments of the form

$$
\begin{aligned}
\frac{1}{2}[f(\theta+t)+f(\theta-t)]=f(\theta) & +\frac{t^{2}}{2!} f_{(2)}(\theta)+\cdots \\
& +\frac{t^{2 k-2}}{(2 k-2)!} f_{(2 k-2)}(\theta)+\left[f_{(2 k)}(\theta)+\epsilon_{t}\right] \frac{t^{2 k}}{(2 k)!}
\end{aligned}
$$

for $r=2 k, k$ being a positive integer, and

$$
\begin{aligned}
& \frac{1}{2}[f(\theta+t)-f(\theta-t)]=t f_{(1)}(\theta)+\frac{t^{3}}{3!} f_{(3)}(\theta)+\cdots \\
& \quad+\frac{t^{2 k-1}}{(2 k-1)!} f_{(2 k-1)}(\theta)+\left[f_{(2 k+1)}(\theta)+\epsilon_{t}\right] \frac{t^{2 k+1}}{(2 k+1)!}
\end{aligned}
$$

for $r=2 k+1$, where $\epsilon_{t} \rightarrow 0$ as $t \rightarrow 0$.
Received October 23, 1946.

