THE PROJECTIVE DEFORMATION OF NON-HOLONOMIC SURFACES

By Hsien-Chung Wang

1. Introduction. The deformation of ordinary surfaces has been one of the important problems in metric differential geometry. It can be regarded as a point correspondence between two surfaces S and S such that to each pair of corresponding points A and \bar{A}, of S and \bar{S} respectively, there exists a rigid motion carrying A to \bar{A}, and at the same time carrying the neighborhood of the first order of A to that of \bar{A}. (See [2].) It is the aim of the present paper to generalize this notion to the non-holonomic surfaces in projective space and study some of the properties of the generalization.

Let us consider a non-holonomic surface S in the ordinary projective space. A point together with the tangent plane at the point (see [1]) form an element of contact so that S defines a three-parameter family F of elements of contact. Since the surface is non-holonomic there exists no two-parameter sub-family of F having the property that the planes are tangent to the surface described by the corresponding origins of the elements of contact. Conversely, given any such family F^{*} of elements we can construct a non-holonomic surface S^{*} related to F^{*} as S to F. Hence we may regard a non-holonomic surface as a threeparameter family of elements of contact. From this point of view it is natural to lay down the following definition (see [3]):

A correspondence of the elements of two non-holonomic surfaces S and \bar{S} is called a projective deformation if to each pair of corresponding elements E and \bar{E}, of S and \bar{S} respectively, there exists a projective transformation carrying E to \bar{E} and carrying the neighborhood of the first order of E to that of \bar{E}.

We can also state it as follows:
An automorphism $P \leftrightarrow \bar{P}$ of the space is called a projective deformation between two non-holonomic surfaces S and \bar{S} if to each pair of corresponding points A and \bar{A} there exists a projective transformation $T(A)$ such that (a) it carries A to \bar{A} and the tangent plane of S at A to that of \bar{S} at \bar{A}; and (b) on neglecting infinitesimals of orders higher than the first, it also carries any neighboring point A^{\prime} of A to the corresponding point \bar{A}^{\prime}, and the tangent plane of S at A^{\prime} to that of \bar{S} at \bar{A}^{\prime}.
2. Ordinary frames; associated projectivity. A set of four analytic points $A A_{1} A_{2} A_{3}$ satisfying the condition

$$
\begin{equation*}
\left|A A_{1} A_{2} A_{3}\right|=1 \tag{1}
\end{equation*}
$$

is called a projective frame [2]. To study the intrinsic property of a non-holonomic surface S we attach to each point of the space the family of all the pro-

[^0]
[^0]: Received September 25, 1946.

