THE PROJECTIVE DEFORMATION OF NON-HOLONOMIC SURFACES

By HSIEN-CHUNG WANG

1. Introduction. The deformation of ordinary surfaces has been one of the important problems in metric differential geometry. It can be regarded as a point correspondence between two surfaces S and \overline{S} such that to each pair of corresponding points A and \overline{A} , of S and \overline{S} respectively, there exists a rigid motion carrying A to \overline{A} , and at the same time carrying the neighborhood of the first order of A to that of \overline{A} . (See [2].) It is the aim of the present paper to generalize this notion to the non-holonomic surfaces in projective space and study some of the properties of the generalization.

Let us consider a non-holonomic surface S in the ordinary projective space. A point together with the tangent plane at the point (see [1]) form an element of contact so that S defines a three-parameter family F of elements of contact. Since the surface is non-holonomic there exists no two-parameter sub-family of F having the property that the planes are tangent to the surface described by the corresponding origins of the elements of contact. Conversely, given any such family F^* of elements we can construct a non-holonomic surface S^* related to F^* as S to F. Hence we may regard a non-holonomic surface as a threeparameter family of elements of contact. From this point of view it is natural to lay down the following definition (see [3]):

A correspondence of the elements of two non-holonomic surfaces S and \overline{S} is called a projective deformation if to each pair of corresponding elements E and \overline{E} , of S and \overline{S} respectively, there exists a projective transformation carrying E to \overline{E} and carrying the neighborhood of the first order of E to that of \overline{E} .

We can also state it as follows:

An automorphism $P \leftrightarrow P$ of the space is called a projective deformation between two non-holonomic surfaces S and \overline{S} if to each pair of corresponding points A and \overline{A} there exists a projective transformation T(A) such that (a) it carries A to \overline{A} and the tangent plane of S at A to that of \overline{S} at \overline{A} ; and (b) on neglecting infinitesimals of orders higher than the first, it also carries any neighboring point A' of A to the corresponding point $\overline{A'}$, and the tangent plane of S at A' to that of \overline{S} at $\overline{A'}$.

2. Ordinary frames; associated projectivity. A set of four analytic points $AA_1A_2A_3$ satisfying the condition

$$|AA_1A_2A_3| = 1$$

is called a *projective frame* [2]. To study the intrinsic property of a non-holonomic surface S we attach to each point of the space the family of all the pro-

Received September 25, 1946.