# PLANE SECTIONS OF THE TANGENT SURFACES OF TWO SPACE CURVES 

By Chuan-Chif Hsiung

1. Introduction. Let $C, \bar{C}$ be two curves in ordinary space having $P$ for their common point with distinct tangents $t, \bar{t}$ but the same osculating plane. If a general plane $\pi$ intersects the tangents $t, \bar{t}$ respectively at points $Q, \bar{Q}$, then the plane sections $\Gamma, \bar{\Gamma}$ of the tangent surfaces of the curves $C, \bar{C}$ made by $\pi$ have a common tangent at $Q, \bar{Q}$. In a recent paper the author [2] called such points $Q, \bar{Q}$ ordinary points of the second kind of the plane sections $\Gamma, \bar{\Gamma}$, for which several osculants have been introduced. The purpose of the present paper is to study these osculants for the plane sections $\Gamma, \bar{\Gamma}$ and also to give an application to the asymptotic curves through an ordinary point of a surface.
$\S 2$ contains power series expansions of the plane sections $\Gamma, \bar{\Gamma}$ which are used in later developments. In §3, we find the loci of two particular osculants of the plane sections $\Gamma, \bar{\Gamma}$ as the plane $\pi$ revolves about the line $Q \bar{Q}$, and especially arrive at a certain correspondence. In the last section we apply the results obtained in $\S 3$ to the interesting case where $C, \bar{C}$ are asymptotic curves of a surface, and then derive a new geometrical characterization of the second projective normal of the surface at the point $P$.
2. Power series expansions. Let $C, \bar{C}$ be two curves in ordinary space having $P$ for their common point with distinct tangents $t, \bar{t}$ but the same osculating plane $(t, \bar{t})$. If $t, \bar{t}$ be taken as the axes $x, y$, then the power series expansions of the two curves $C, \bar{C}$ in the neighborhood of the point $P$ may be respectively written in the form

$$
\begin{array}{ll}
y=a x^{2}+b x^{3}+\cdots, & z=r x^{3}+s x^{4}+\cdots ; \\
x=\alpha y^{2}+\beta y^{3}+\cdots, & z=\rho y^{3}+\sigma y^{4}+\cdots \tag{2}
\end{array}
$$

The tangents of the curve $C$ describe a developable surface $T$, namely, the tangent surface. The equations of the tangent surface $T$ are evidently of the form

$$
\begin{equation*}
\xi=x+\mu, \quad \eta=y+\mu y^{\prime}, \quad \zeta=z+\mu z^{\prime} \tag{3}
\end{equation*}
$$

where $y^{\prime}=d y / d x, z^{\prime}=d z / d x ; \mu$ denotes another parameter and $\xi, \eta, \zeta$ the current coordinates of a point.

Let us consider a general plane $\pi$ which does not pass through the point $P$ :

$$
\begin{equation*}
\zeta=\lambda(C+B \xi+A \eta) \quad(\lambda C \neq 0) \tag{4}
\end{equation*}
$$

Received April 18, 1946.

