PLANE SECTIONS OF THE TANGENT SURFACES OF TWO SPACE CURVES

By Chuan-Chih Hsiung

1. Introduction. Let C, \overline{C} be two curves in ordinary space having P for their common point with distinct tangents t, \overline{t} but the same osculating plane. If a general plane π intersects the tangents t, \overline{t} respectively at points Q, \overline{Q} , then the plane sections Γ , $\overline{\Gamma}$ of the tangent surfaces of the curves C, \overline{C} made by π have a common tangent at Q, \overline{Q} . In a recent paper the author [2] called such points Q, \overline{Q} ordinary points of the second kind of the plane sections Γ , $\overline{\Gamma}$, for which several osculants have been introduced. The purpose of the present paper is to study these osculants for the plane sections Γ , $\overline{\Gamma}$ and also to give an application to the asymptotic curves through an ordinary point of a surface.

§2 contains power series expansions of the plane sections Γ , Γ which are used in later developments. In §3, we find the loci of two particular osculants of the plane sections Γ , $\overline{\Gamma}$ as the plane π revolves about the line $Q\overline{Q}$, and especially arrive at a certain correspondence. In the last section we apply the results obtained in §3 to the interesting case where C, \overline{C} are asymptotic curves of a surface, and then derive a new geometrical characterization of the second projective normal of the surface at the point P.

2. Power series expansions. Let C, \overline{C} be two curves in ordinary space having P for their common point with distinct tangents t, \overline{t} but the same osculating plane (t, \overline{t}) . If t, \overline{t} be taken as the axes x, y, then the power series expansions of the two curves C, \overline{C} in the neighborhood of the point P may be respectively written in the form

(1) $y = ax^2 + bx^3 + \cdots, \quad z = rx^3 + sx^4 + \cdots;$

(2)
$$x = \alpha y^2 + \beta y^3 + \cdots, \qquad z = \rho y^3 + \sigma y^4 + \cdots.$$

The tangents of the curve C describe a developable surface T, namely, the tangent surface. The equations of the tangent surface T are evidently of the form

(3)
$$\xi = x + \mu, \quad \eta = y + \mu y', \quad \zeta = z + \mu z',$$

where y' = dy/dx, z' = dz/dx; μ denotes another parameter and ξ , η , ζ the current coordinates of a point.

Let us consider a general plane π which does not pass through the point P:

(4)
$$\zeta = \lambda(C + B\xi + A\eta) \qquad (\lambda C \neq 0).$$

Received April 18, 1946.