A LOCAL MAXIMUM PROPERTY OF THE FOURTH COEFFICIENT OF
SCHLICHT FUNCTIONS
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1. Let the power series

(D w=f@ =2+ a2 + a2 + a2 + ---

converge for z in the circle of radius 1 with the center at the origin, that is,
for | z| < 1. If to any two distinct values of z in this circle the corresponding
values of w are also distinet, the power series defines a one-to-one conformal
mapping of the unit circle | 2| < 1 onto some region in the w-plane. As z varies
throughout the unit circle the corresponding point w varies over the region in
the w-plane covering each point of the region once and only once. The property
that the power series defines a one-to-one mapping of the unit circle onto a
region in the w-plane restricts the coefficients a, , @; , - -+ in the power series,
and the problem of determining what values these coefficients may have is an
extremely difficult one. The coefficients a, , a3 , --- are in general complex
numbers, and the so-called coefficient problem in the theory of schlicht functions
may be stated in the following form: What is the region V, of points
(az, as, -+, a,) in 2n — 2 dimensional real euclidean space which correspond
to schlicht power series of the form (1)? As is well known, Faber and Bieberbach
proved that | @, | < 2. Thus V, is a circle of radius 2. Loéwner [2] showed that
|as| < 3. Schaeffer and Spencer [3] gave a second proof that | a; | < 3, and
they have also found a method which yields the regions V, of variability of the
coefficients: implicitly for » > 3 and explicitly in terms of elementary functions
in the case n = 3. (See [4].) In the present paper it is shown that | a, | has a
local maximum for the function f(z) = z/(1 — ¢%2)® = z 4 2¢*2* 4 3¢*%2* +
46*2* 4 ..., thus completing certain calculations indicated by Joh [1]. More
precisely, we shall prove the following theorem:

If Lowner's k-function has the form
(la,) k(t) — ei[ao+a(t)l’
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