THE COMPOSITION OF CUBIC FORMS

By A. R. Richardson

The recent work by L. E. Dickson [1; 268] and C. C. MacDuffee [2] may be extended by introducing a specified form f.

Notation. Let R be a commutative and associative ring with a modulus 1 , and let $f(x)=\sum_{i} X_{i} Y_{i} Z_{i}$ be a cubic form, X_{i}, Y_{i}, Z_{i} being linear in the indeterminates $x_{1}, x_{2}, \cdots, x_{n}$ over R. Let

$$
\left.\begin{aligned}
& P_{1}=\left|\begin{array}{ccc}
X_{1} & X_{2} & 0 \\
0 & Y_{1} & Y_{2} \\
Z_{2} & 0 & Z_{1}
\end{array}\right|, \quad U_{2}=\left|\begin{array}{cc}
P_{1} & 0 \\
0 & P_{1}
\end{array}\right|, \quad V_{2}=\left|\begin{array}{cc}
P_{1}-X_{1} & P_{1}-X_{1}-Y_{1} \\
Z_{1} & P_{1}-Y_{1}
\end{array}\right|, \\
& W_{2}=\left|\begin{array}{cc}
P_{1}-Y_{1} \\
-Z_{1} & -P_{1}+X_{1}+Y_{1} \\
P_{1}-X_{1}
\end{array}\right|, \quad P_{i}=\left|\begin{array}{ccc}
U_{i} & X_{i+1} & 0 \\
0 & V_{i} & Y_{i+1} \\
Z_{i+1} & 0 & W_{i}
\end{array}\right|, \\
& U_{i+1}=\left|\begin{array}{cc}
P_{i} & 0 \\
0 & P_{i}
\end{array}\right|, \quad V_{i+1}=\left|\begin{array}{c}
P_{i}-U_{i} \\
W_{i} \\
P_{i}-U_{i}-V_{i} \\
-W_{i}
\end{array}\right| \\
& W_{i+1}=\left|\begin{array}{c}
P_{i}-V_{i}-V_{i}
\end{array}\right| \\
& -P_{i}+U_{i}+V_{i} \\
& P_{i}-U_{i}
\end{aligned} \right\rvert\,, ~ l
$$

where $P_{i}-U_{i}$ is interpreted as

$$
\left|\begin{array}{ccc}
0 & X_{i+1} & 0 \\
0 & V_{i}-U_{i} & Y_{i+1} \\
Z_{i+1} & 0 & W_{i}-U_{i}
\end{array}\right|
$$

each of the constituent matrices being of the same order. Hence U_{i}, V_{i}, W_{i} are commutative matrices each of order 6^{i-1} with elements linear in x_{1}, x_{2}, \cdots, x_{n}. The determinants of U_{n}, V_{n}, W_{n} are each equal to f^{k} where $k=2^{n-1} 3^{n-2}$. Hence, if sets of indeterminates $(\alpha),(\beta),(\gamma)$ each of order $p=6^{n-1}$ exist such that

Received October 24, 1945.

