LIMITS FOR THE CHARACTERISTIC ROOTS OF A MATRIX. II.

By Alfred Brauer

This paper is a continuation of my paper "Limits for the characteristic roots of a matrix", this Journal, vol. 13 (1946), pp. 387-395. I am able now to improve some of the results obtained in this paper.

We continue the numeration of the theorems and equations. Again, let $A=\left(a_{\kappa \lambda}\right)$ be a square matrix of order n, and ω an arbitrary characteristic root of A. We set

$$
\sum_{\substack{v=1 \\ \nu \neq \kappa}}^{n}\left|a_{\kappa \nu}\right|=P_{\kappa} \quad \text { and } \quad \sum_{\substack{\nu=1 \\ \nu \times \kappa}}^{n}\left|a_{\nu k}\right|=Q_{k} .
$$

Theorem 1 will be improved as follows.
Each characteristic root ω of A lies in the interior or on the boundary of at least one of the $n(n-1) / 2$ ovals of Cassini

$$
\left|z-a_{\kappa \kappa}\right|\left|z-a_{\lambda \lambda}\right| \leq P_{\kappa} P_{\lambda} \quad(\kappa \neq \lambda)
$$

and in at least one of the $n(n-1) / 2$ ovals

$$
\left|z-a_{\kappa \kappa}\right|\left|z-a_{\lambda \lambda}\right| \leq Q_{\kappa} Q_{\lambda} \quad(\kappa \neq \lambda)
$$

This is sharper than Theorem 1 since every point of the oval (21) lies in the interior or on the boundary of at least one of the circles $\left|z-a_{\kappa \kappa}\right|=P_{\kappa}$ and $\left|z-a_{\lambda \lambda}\right|=P_{\lambda}$.
We set

$$
\left.\begin{array}{l}
M=\frac{1}{2} \max _{\kappa, \lambda=1,2, \cdots, n}^{\kappa \neq \lambda}<
\end{array}\left|a_{\kappa \kappa}\right|+\left|a_{\lambda \lambda}\right|+\left(\left(\left|a_{\kappa \kappa}\right|-\left|a_{\lambda \lambda}\right|\right)^{2}+4 P_{\kappa} P_{\lambda}\right)^{\frac{1}{2}}\right\},
$$

It follows from (21) that

$$
\begin{equation*}
|\omega| \leq M . \tag{23}
\end{equation*}
$$

This is sharper than Theorem 2 if

$$
\max _{\nu=1,2, \cdots, n}\left\{\left|a_{\nu \nu}\right|+P_{\nu}\right\}=\left|a_{k k}\right|+P_{k}>\max _{\substack{\nu=1,2, \cdots \cdots, n \\ \nu \neq k}}\left\{\left|a_{\nu \nu}\right|+P_{\nu}\right\}
$$

Denote the determinant of A by D. It follows from (23) that $|D| \leq M^{n}$.
Received November 1, 1946; presented to the American Mathematical Society, November 2, 1946.

