A CLASS OF ENTIRE FUNCTIONS

By R. Creighton Buck

1. Introduction. Let us denote by K_{A} the class of entire functions of exponential type at least A; for all θ, we have $h(\theta) \leq A$, where

$$
\begin{equation*}
h(\theta)=\underset{r \rightarrow \infty}{\limsup } \frac{\log \left|j^{i}\left(r e^{i \theta}\right)\right|}{r} . \tag{1.1}
\end{equation*}
$$

The function $h(\theta)$ describes the rate of growth of the function $f(z)$ in the direction θ. We shall also use the symbol $K(a, c)$ to denote those functions of exponential type which are of type a on the whole real axis, and type c on the whole imaginary axis; then, $h(0) \leq a, h(\pi) \leq a$, and $h\left(\pm \frac{1}{2} \pi\right) \leq c$, so that for any positive ϵ, $(z)=O(1) \exp (a|x|+c|y|+\epsilon|z|)$ as $r \rightarrow \infty$.
One of the central problems of the study of the class K_{A} is that of inferring properties of $f(z)$ from the sequence of values $!f(n)\}$. (For a discussion of this and related problems as well as an extensive bibliography, see [1].) Suppose we are given an arbitrary sequence of complex numbers $\left\{w_{n}\right\}$, can we find a function of K_{A} such that $f(n)=w_{n}$ and is it unique? First, an obvious necessary condition for the existence of such a function is that the growth of the sequence $\left\{w_{n}\right\}$ be of finite type, i.e.

$$
\begin{equation*}
\lim \sup \left|w_{n}\right|^{1 / n}<\infty \tag{1.2}
\end{equation*}
$$

This condition is also sufficient. In fact, if (1.2) holds, there is a function $f(z)$ of $K(a, \pi)$ for which $f(n)=w_{n}$. We need only choose $f(z)$ as $e^{\alpha z} g(z)$, where

$$
g(z)=\frac{\sin \pi z}{\pi} \sum_{n=1}^{\infty} \frac{(-1) w_{n} e^{-\alpha n}}{z-n}
$$

If $\alpha>\lim \sup \left(\log \left|w_{n}\right|\right) / n$, then this series converges for all z, and $g(z)$ belongs to $K(0, \pi)$.

Thus, the class $K(a, \pi)$ is universal in the sense that in it all possible sequences of values $\{f(n)\}$ are achieved. We cannot have uniqueness, since to $f(z)$ we can add $h(z) \sin \pi z$ where $h(z)$ belongs to K_{0} without altering the class. The question now arises: can we give necessary or sufficient conditions on the sequence w_{n} for there to exist a function $f(z)$ taking these values at the integers, and belonging to the class $K(a, c)$ for some a and some $c<\pi$? A well-known theorem of Carlson assures us that if there is such a function, it is then unique.

We shall formulate one such necssary and sufficient condition, and then make a number of applications of it. In §4, we shall discuss the effects of oscillation in sign of the real parts of the numbers $f(n)$; in $\S 6$ and §7, we study the characterization of integral-valued entire functions and the more special problem of

Received May 6, 1946.

