SOME THEOREMS IN DIMENSION THEORY FOR NORMAL
HAUSDORFF SPACES

By Erik HEMMINGSEN

1. Introduction. The purpose of this paper is to prove for normal Hausdorff
spaces a number of theorems which are known for separable metric spaces.
The equivalence of Lebesgue’s covering definition in terms of open sets to the
definition of Alexandroff in terms of mappings into the n-simplex is proved
together with some other equivalences. Another proof of the sum theorem for
countably many closed sets is given; and it is proved that the dimension of the
Cartesian product of two compact spaces does not exceed the sum of the dimen-
sions of the spaces.
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2. Notation and Definitions. The operations of the algebra of sets will be
written as in Kuratowski [9]. In particular, lower case Roman subscripts will
be used only when the range of the subsecripts is finite or countable.

A Hausdorff space is a T, space in the sense of Alexandroff and Hopf. A
space is called normal if all pairs of disjoint closed sets have disjoint neighbor-
hoods.

Simplices and complexes will be used only in their most elementary geo-
metrical sense. The n-simplex, written ¢", is defined as the convex hull of any
set of n + 1 independent points in Euclidean n-space. The n 4+ 1 points will
be called the vertices of ¢". The boundary of ¢", written S"7', is the sum of the
convex hulls of all sets of n vertices of ¢"; these (n — 1)-simplices will be called
the faces of ¢". A complex, K, will be a finite collection of simplices with the
property that if ¢" ¢ K then each face of ¢" is an element of K and with the
additional property that two simplices can intersect only in a simplex of K.
In a complex the open star with center at a vertex is the complement of the set
of simplices in the complex which do not contain the vertex.

All the usual properties of simplices will be assumed. In particular, the
dimension of the n-simplex, in any sense of the word dimension, is n; and the
dimension of the Cartesian product of two simplices is the sum of their dimen-
sions. Sets homeomorphic to the n-simplex in which it is desired to have other
than simplicial subdivisions of the boundary will be called n-cells. The set
S” will be called the n-sphere. Continuous functions will be called mappings.
If fis a mapping, f: X — Y, and A C X, then by f/A is meant the mapping
obtained by restricting the domain of fto A. A mapping f: X — S will be called
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