CORRECTION TO "ENTIRE FUNCTIONS BOUNDED ON A LINE"

By R. P. Boas, Jr.

1. It has been pointed out to me by R. J. Duffin that the proofs of Lemmas 2, 3 and 6 of this paper [1] are inconclusive. Although the main result of [1] has been superseded by a stronger result of Duffin and Schaeffer [2], it seems desirable to make [1] complete.

We consider

$$
\begin{equation*}
\psi(z)=\left(z-\lambda_{0}\right) \prod_{n=1}^{\infty}\left(1-z / \lambda_{n}\right)\left(1-z / \lambda_{-n}\right), \tag{1}
\end{equation*}
$$

where the λ_{n} are real numbers satisfying $\left|\lambda_{n}-n\right| \leq \delta<\frac{1}{2}$ (it seems to be necessary to require that $\delta<\frac{1}{2}$ instead of $\delta \leq \frac{1}{2}$ as in [1]). It was asserted [1; 156, lines following (3.6)] that the functions $\psi(z+m)$ are products like (1) with zeros $\lambda_{n}^{(m)}=\lambda_{n+m}-m$ satisfying $\left|\lambda_{n}^{(m)}-n\right| \leq \delta$. This appears to be incorrect. We can show, however, that if we define

$$
\begin{equation*}
\psi_{m}(z)=\left(z-\lambda_{0}^{(m)}\right) \prod_{n=1}^{\infty}\left(1-z / \lambda_{n}^{(m)}\right)\left(1-z / \lambda_{-n}^{(m)}\right), \tag{2}
\end{equation*}
$$

then $\psi(z+m)=a_{m} \psi(z)$, where $0<r(\delta)<a_{m}<R<\infty, r$ and R being independent of m; this is all that is needed in [1].

Since $\psi(z+m)$ and $\psi_{m}(z)$ have the same zeros, $\psi(z+m)=a_{m} e^{b_{m} z} \psi_{m}(z)$; it follows easily from general theorems that $\psi(z+m)$ and $\psi_{m}(z)$ have the same indicator diagram; hence $b_{m}=0$. To evaluate a_{m}, we observe that $\psi^{\prime}\left(\lambda_{0}^{(m)}+m\right)=a_{m} \psi_{m}^{\prime}\left(\lambda_{0}^{(m)}\right)$. Now

$$
\begin{aligned}
\psi^{\prime}\left(\lambda_{0}^{(m)}+m\right) & =\psi^{\prime}\left(\lambda_{0}\right)=\prod_{n=1}^{\infty}\left(1-\lambda_{0} / \lambda_{n}\right)\left(1-\lambda_{0} / \lambda_{-n}\right), \\
\psi_{m}^{\prime}\left(\lambda_{0}^{(m)}\right) & =\prod_{n=1}^{\infty}\left(1-\lambda_{0}^{(m)} / \lambda_{n}^{(m)}\right)\left(1-\lambda_{0}^{(m)} / \lambda_{-n}^{(m)}\right)
\end{aligned}
$$

These two products are of the same form, and $\left|\lambda_{n}^{(m)}-n\right| \leq \delta$ if $\left|\lambda_{n}-n\right| \leq \delta$. Hence we need only show that $\psi^{\prime}\left(\lambda_{0}\right)$ has finite upper and positive lower bounds depending only on δ. We have

$$
\left(1-\lambda_{0} / \lambda_{n}\right)\left(1-\lambda_{0} / \lambda_{-n}\right)=1-\lambda_{0} \frac{\lambda_{n}+\lambda_{-n}}{\lambda_{n} \lambda_{-n}}+\frac{\lambda_{0}^{2}}{\lambda_{n} \lambda_{-n}} \leq 1+2 \delta^{2} /(n-\delta)^{2},
$$

so that

$$
\psi^{\prime}\left(\lambda_{0}\right) \leq \prod_{n=1}^{\infty}\left(1+2 \delta^{2} /(n-\delta)^{2}\right)<\prod_{n=1}^{\infty}\left(1+\frac{1}{2} /\left(n-\frac{1}{2}\right)^{2}\right)=R .
$$

Received June 6, 1946.

