THE BIRATIO OF THE ALTITUDES OF A TETRAHEDRON

By N. A. Court

1. Definitions. (a) The tetrahedron $\left(T_{h}\right)=A_{h} B_{h} C_{h} D_{h}$ formed by the feet of the altitudes $h_{a}=A A_{h}, h_{b}=B B_{h}, h_{c}=C C_{h}, h_{d}=D D_{h}$ of a given tetrahedron $(T)=A B C D$ will be referred to as the "first orthic tetrahedron" of (T).
(b) The tetrahedron $\left(H_{t}\right)=H_{a} H_{b} H_{c} H_{d}$ having for vertices the orthocenters of the faces of (T) will be referred to as the "second orthic tetrahedron" of (T).
(c) The biratio (i.e., the anharmonic ratio) of the four altitudes of (T) (taken in a certain order) will be denoted by η.
2. A pencil of quadric surfaces. (a) The three pairs of opposite edges $a=B C$, $a^{\prime}=D A ; b=C A, b^{\prime}=D B ; c=A B, c^{\prime}=D C$ of a tetrahedron $(T)=A B C D$ are pairs of axes of three orthogonal hyperboloids $\left(a a^{\prime}\right)$, $\left(b b^{\prime}\right)$, ($c c^{\prime}$) associated with (T). The three hyperboloids form a pencil which includes the hyperboloid (H) determined by the altitudes of (T), see $[1 ; 2,4 \mathrm{~d}]$.

Theorem. The biratio of the four hyperboloids of the pencil is equal to the biratio η of the altitudes of the tetrahedron (T).

The tangent plane to the hyperboloid $\left(a a^{\prime}\right)$ at the point A is determined by the orthocentric line p of the trihedron A of (T) and the edge $a^{\prime}=A D$ [1;4b]. The plane $p a^{\prime}$ is perpendicular to the face $A B C$ of (T) and therefore contains the altitude h_{d} of (T), hence $p a^{\prime}$ is tangent to the hyperboloid (H) at the point $p h_{d}$. Similarly the tangent planes at A to the hyperboloids ($b b^{\prime}$), ($c c^{\prime}$) are tangent to the hyperboloid (H) at the points $p h_{c}, p h_{d}$, respectively.

Thus the tangent planes $p h_{a}, p h_{b}, p h_{c}, p h_{d}$ to the four hyperboloids $(H),\left(a a^{\prime}\right)$, $\left(b b^{\prime}\right),\left(c c^{\prime}\right)$ at the point A are tangent to the hyperboloid (H) at the points where the orthocentric line p cuts the altitudes $h_{a}, h_{b}, h_{c}, h_{d}$ of (T). Now the biratio of the range of points of contact $p\left(h_{a} h_{b} h_{c} h_{d}\right)$ is equal to the biratio of the pencil of tangent planes $p\left(h_{a} h_{b} h_{c} h_{d}\right)$, and the biratio of the pencil of planes is equal to the biratio of the pencil of hyperboloids; hence the proposition.
(b) The planes $p h_{a}, p h_{b}, p h_{c}, p h_{d}$ pass, respectively, through the points $A_{h}, B_{h}, C_{h}, D_{h}$, i.e., these planes project from p the vertices of the first orthic tetahedron $\left(T_{h}\right)$ of (T). Similarly for the orthocentric lines q, r, s of the trihedrons B, C, D, of (T). Now the lines p, q, r, s, are the tangents to the skew quartic common to the four hyperboloids $(H),\left(a a^{\prime}\right),\left(b b^{\prime}\right),\left(c c^{\prime}\right)$ at the respective vertices of (T) [1; 4b]; hence [3; 180, art. 8], [4; 21, art. 35]: The tangents, at the vertices of the tetrahedron (T), to the skew quartic (C_{4}) associated with (T) are met

