EXPANSION OF FUNCTIONS IN COMBINATIONS OF GENERALIZED HYPERGEOMETRIC FUNCTIONS

By Leonard Bristow

The purpose of this paper is to consider the expansion of a suitable arbitrary function of a real variable in a series of solutions of a linear differential equation containing a parameter. These solutions may be expressed in terms of the generalized hypergeometric function. The interval on which the function is to be defined contains a regular singular point of the differential equation, either as an end or interior point. G. D. Birkhoff [1], M. H. Stone [5] and [6], J. D. Tamarkin [7], and many others have considered expansions of functions in solutions of differential equations but only in [6] does the interval contain a singularity of the differential equation. The differential equation considered here is self-adjoint and of a simple type with a regular singular point at the origin. There are either two-point boundary conditions with the origin separating the points, or one-point boundary conditions with certain regularizing conditions at the origin. The methods are those used by Stone in [5] and [6]. As special cases there result Fourier series, Fourier-Bessel and Dini expansions in Bessel functions. Also new expansions in Bessel functions may be obtained.

I. The Origin as an Interior Point

1. Setting of the problem. Consider the linear differential equation of order n

$$
\begin{equation*}
L(y)+\lambda y \equiv L(y)+\rho^{n} y=0, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
L(y) \equiv y^{(n)}+{ }^{*}+a_{2} x^{-2} y^{(n-2)}+\cdots+a_{n} x^{-n} y \tag{2}
\end{equation*}
$$

The a_{2}, \cdots, a_{n} are real or complex constants determined so that $L(y)$ is a selfadjoint expression. λ and ρ are parameters. The adjoint equation of (1) may be written

$$
\pm L(v)+\lambda v=0 \quad(+ \text { if } n \text { is even, }- \text { if } n \text { is odd). }
$$

If r is a root of the indicial equation of (1) then $-r+n-1$ is also a root. Assume n to be either of the form 2μ or $2 \mu+1, \mu$ an integer. Then if $r_{k}, k=$ $1, \cdots, n$, are the roots we can write $r_{k}=\nu_{k}+(n-1) / 2$ where $\nu_{k}, k=1$, $2, \cdots, \mu$, are real or complex numbers and $\nu_{k}=-\nu_{n-k+1}, k>n / 2$. The ν_{k} are assumed arranged so that

$$
\begin{equation*}
R\left(\nu_{1}\right) \geq R\left(\nu_{2}\right) \geq \cdots \geq R\left(\nu_{\mu}\right) \quad\left(R\left(\nu_{i}\right)=\text { real part of } \nu_{i}\right) \tag{4}
\end{equation*}
$$

Received October 30, 1945.

