A THEOREM OF M. BAUER

By Alfred Brauer

Bauer [1] has proved the following theorem.
Let $f(x)$ be a polynomial with integral rational coefficients and at least one real root of odd multiplicity. If all the prime divisors of $f(x)$, with the exception of a finite number, have the form $k z \pm 1$ where $k>2$ is an integer, then $f(x)$ has an infinite number of prime divisors which do not have the form $k z+1$.

Bauer's proof is also presented by E. Landau [2; 440-441]. I. Schur [3] remarked that the theorem holds for every integral polynomial with at least one real root.

In the following, I shall give another simple proof of Bauer's theorem which will show that the theorem is almost trivial for polynomials of odd degree. I shall prove the following generalization of Bauer's result.

Theorem 1. Let $f(x)$ be a polynomial with integral rational coefficients which has at least one real root. Let $\mathfrak{G H}(k)$ be the group of the residue classes relatively prime to k, and \mathfrak{S} a subgroup which does not contain the class of numbers congruent to $-1(\bmod k)$. Then $f(x)$ contains infinitely many prime divisors which do not belong to the classes of \mathfrak{S}.

Since the quadratic residues form a subgroup \mathfrak{S} of $\mathfrak{B}(k)$, and since -1 is a quadratic non-residue for the primes q of form $4 n+3$, it follows from Theorem 1 at once

Theorem 2. If q is a prime of form $4 n+3$ and $f(x)$ a polynomial with a real root, then $f(x)$ contains an infinite number of prime divisors which are quadratic non-residues $\bmod q$.

For every k, polynomials exist of which all the prime divisors, except a finite number, have the form $k z+1$. It is unknown whether polynomials exist of which all the prime divisors, except a finite number, belong to the same residue class $k z+l$ with $l \neq 1$. Here the following result is obtained.

Theorem 3. Let $f(x)$ be an integral polynomial with a real root. Let k be an integer of one of the following forms: $2^{\alpha}, 2^{\beta} P, 2 Q$, or Q where P and Q are Fermat primes $2^{2 \gamma}+1$ or products of different Fermat primes, Q divisible by 3 , and $\beta \geq 2$. Assume that all the prime divisors of $f(x)$ with the exception of a finite number belong to the same residue class $k z+l$. Then $l \equiv-1(\bmod k)$.

Proof of Theorem 1. It is sufficient to assume that $f(x)$ is irreducible in the field of rational numbers. Otherwise we consider a factor of $f(x)$ which has a

Received February 5, 1946; presented to the American Mathematical Society, April 27, 1946.

