A SKEW QUARTIC ASSOCIATED WITH A TETRAHEDRON

By N. A. Court

1. Historical note. The study of a problem in astronomy led Jean Hachette (1769-1834) to consider the locus of the line of intersection u of two variable orthogonal planes $a u, a^{\prime} u$ revolving about two fixed coplanar axes a, a^{\prime} [4; 179180, 311-312]. He thus came upon the orthogonal cone, or the Hachette cone, as the French writers call it.

By taking for the two axes a, a^{\prime} two skew lines, one of Hachette's associates in the École Polytechnique obtained the orthogonal hyperboloid of one sheet [$1 ; 71]$. Steiner pointed out that the circular sections of an orthogonal hyperboloid are perpendicular to the axes a, a^{\prime} [7; 292, article 65].

The first systematic discussion of both the orthogonal cone and the orthogonal hyperboloid is due to Cha les [2]. An extensive treatment of the subject was given by Schroeter [6; articles 12, 25, 26].
2. A pencil of quadrics. (a) Consider a tetrahedron $(T)=A B C D, B C=a$, $C A=b, A B=c, D A=a^{\prime}, D B=b^{\prime}, D C=c^{\prime}$. We associate with (T) the three orthogonal hyperboloids $\left(a a^{\prime}\right),\left(b b^{\prime}\right),\left(c c^{\prime}\right)$ whose respective axes are the pairs of edges $a, a^{\prime} ; b, b^{\prime} ; c, c^{\prime}$.
(b) Let M be a point common to the two surfaces $\left(a a^{\prime}\right)$, $\left(b b^{\prime}\right)$. Since M lies on ($a a^{\prime}$), the two planes $M B C, M A D$ are perpendicular and therefore the plane through $M A$ perpendicular to $M B C$ passes through $M D$. Again since M lies on ($b b^{\prime}$) the plane through $M B$ perpendicular to $M C A$ passes through $M D$. Consequently [3; 27, article 67] the plane through $M C$ perpendicular to the plane $M A B$ passes through $M D$, i.e., the two planes $M C D, M A B$ are perpendicular; hence the point M also belongs to the hyperboloid ($c c^{\prime}$).

Thus any point M common to two of the three surfaces $\left(a a^{\prime}\right),\left(b b^{\prime}\right),\left(c c^{\prime}\right)$ also belongs to the third surface, hence: the three orthogonal hyperboloids associated with a tetrahedron belong to the same pencil of quadrics.

3. A skew quartic.

(a) Definition. The three orthogonal hyperboloids associated with a tetrahedron (T) $=A B C D$ (article 2a) have in common a skew quartic (C_{4}). This curve will be referred to as the skew quartic $\left(C_{4}\right)$ of the tetrahedron (T), or associated with (T).
(b) Each of the three hyperboloids associated with (T) contains a pair of opposite edges of (T) and therefore contains the vertices of (T), hence: the skew quartic $\left(C_{4}\right)$ of a tetrahedron passes through the vertices of that tetrahedron.

The skew quartic (C_{4}) of a tetrahedron (T) is
Received November 12, 1945; revision received December 22, 1945.

