TRANSCENDENCE PROPERTIES OF THE CARLITZ ψ-FUNCTIONS

By L. I. Wade

1. $G F(q, x), q=p^{n}$, will denote the field of rational functions of x over the finite field $G F(q)$, and $G F[q, x]$ the corresponding ring of polynomials. If $E \neq 0$ and $G \neq 0$ are two elements of $G F[q, x]$, then $v(E / G)=p^{\Delta-0}$, where degree $E=e$ and degree $G=g$, and $v(0)=0$ defines a (non-archimedian) valuation of $G F(q, x) . \quad G F(q, x)$ with its valuation, can be imbedded in a minimal algebraically closed field \mathfrak{M} with a valuation that is also complete with respect to the valuation. Convergence of infinite series and products thus has the obvious meaning of being in \mathfrak{M} (see [6]). Transcendental here will mean transcendental over $G F(q, x)$, or equivalently over $G F(p, x)$.
We are interested here in various quantities connected with the Carlitz ψ-functions [1], [6]. Place

$$
\begin{align*}
& {[k]=x^{a^{k}}-x,} \\
& F_{k}=[k][k-1]^{a} \cdots[1]^{a^{k-1}}, \quad F_{0}=1, \tag{1}\\
& L_{k}=[k][k-1] \cdots[1], \quad L_{0}=1
\end{align*}
$$

The function (see [1], [6])

$$
\begin{aligned}
\psi(t) & =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{F_{k}} t^{q^{k}} \\
& =t \prod\left(1-\frac{t}{E \xi}\right),
\end{aligned}
$$

where the product extends over all non-zero elements E of $G F[q, x]$ and with ξ a certain element of $\mathfrak{M} . \psi(t)$ converges for all t of \mathfrak{M} and has the properties

$$
\begin{equation*}
\psi(t+u)=\psi(t)+\psi(u) ; \quad \psi(c t)=c \psi(t) \quad(c \varepsilon G F(q)) \tag{2}
\end{equation*}
$$

The inverse function $\lambda(t)$ of $\psi(t)$ is defined for all t and is infinite valued (see [6]). It has been proved in [4], [5] that, for algebraic $\alpha \neq 0, \psi(\alpha)$ is transcendental and hence $\lambda(\alpha)$ and ξ are transcendental.

For any M of $G F[q, x]$ and of degree $\leq m, \psi(t)$ has the multiplication theorem [1; 151]

$$
\begin{equation*}
\psi(M t)=\sum_{k=0}^{m} \frac{(-1)^{k}}{F_{k}} \psi_{k}(M) \psi^{a^{k}}(t), \tag{3}
\end{equation*}
$$

[^0] Research Fellow, 1942-1943, at the Institute for Advanced Study.

[^0]: Received December 3, 1945; these results were obtained while the author was a National

