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The existence and term by term Fréchet differentiability of all orders of a reg-
ular power series in complex Banach spaces (complete normed linear spaces with
complex numbers as multipliers) was proved by Robert 8. Martin [2] throughout
the ‘“‘sphere of analyticity” of the power series. The method of proof is in-
applicable to power series in Banach spaces. A special method of proof suitable
for a special power series in a special Banach space (a real normed linear ring)
was given by Michal and Martin [5].

In this note we give a simple proof by entirely different methods of the general
result for power series in Banach spaces. The need for such a theorem in many
branches of analysis and differential geometry has been outstanding for many
years. The author has already written two papers [3], [4] dealing with the
applications of this theorem to several important problems in analysis.

Let p.(z) be a homogeneous polynomial of degree n on a Banach space E, to
a Banach space F, . Hence,
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where p,-,..(x, y) is homogeneous of degree n — r in z and homogeneous of
degree r in y. Clearly p,-,..(z, y) is the first Fréchet differential p,(x; y) of
p.(x) at x = z with increment y.

Denote by m(p,) the modulus of p,(x) so that
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Let L(2) be any linear functional on E, to the real numbers with modulus unity.
Define

) fQ) = L(pa(z + My)).

If a prime denotes numerical differentiation, then from (1) and the composition
theorem for Fréchet differentials we obtain

€Y J0) = L(pa-r.(x, ).
The following chain of inequalities holds for | A | < 1:
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To proceed further we need to prove a lemma in classical analysis.
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