FOURIER COEFFICIENTS OF DOMINANT FUNCTIONS

By PAUL CIVIN

1. Let f(x) be a complex integrable function of period 2π and let F(x) be an integrable function of period 2π which dominates f(x), i.e. $F(x) \ge |f(x)|$. Suppose $f(x) \sim \sum_{-\infty}^{\infty} c_m e^{mix}$ and $F(x) \sim \sum_{-\infty}^{\infty} C_m e^{mix}$. If $h(x) \sim \sum_{-\infty}^{\infty} d_m e^{mix}$, we denote $(\sum_{-\infty}^{\infty} |d_m|^r)^{1/r}$ by $\mathfrak{N}_r(h)$. We are concerned with relations of inequality between $\mathfrak{N}_r(f)$ and $\mathfrak{N}_r(F)$.

This problem is the dual of a problem of Hardy and Littlewood [1], who consider functions F(x) whose Fourier series are majorants of the Fourier series of f(x), i.e. $C_m \geq |c_m|$. They consider relations of inequality between $\mathfrak{A}_r(f)$ and $\mathfrak{A}_r(F)$, where $\mathfrak{A}_r(h) = (1/2\pi) (\int_{-\pi}^{\pi} |h(x)|^r dx)^{1/r}$.

Our result is the following theorem.

THEOREM 1. For any function F(x) which dominates f(x),

$$\mathfrak{N}_{q}(f) \leq \mathfrak{N}_{q}(F) \qquad (q = 2, 4, 6, \cdots)$$

For any function f(x), there is some dominant function $F_{p}(x)$, such that

$$\mathfrak{N}_{p}(F_{p}) \leq \mathfrak{N}_{p}(f), \qquad p = \frac{2k}{2k-1} \qquad (k = 1, 2, \cdots).$$

The two parts of this theorem are embodied in Theorems 2 and 3 respectively. The only assertion concerning the problem for general values of q is that of Theorem 3.

Henceforth, we suppose that all functions are integrable and of period 2π , that $q \ge 2$, and p = q' = q/(q - 1) so that $1 . All integrals are taken over the interval <math>(-\pi, \pi)$ unless otherwise specified.

2. THEOREM 2. For any function F(x) which dominates f(x),

$$\mathfrak{N}_q(f) \leq \mathfrak{N}_q(F) \qquad (q = 2, 4, 6, \cdots).$$

If q = 2, the Riesz-Fischer theorem implies that

$$\mathfrak{N}_2(f) = \mathfrak{A}_2(f) \leq \mathfrak{A}_2(F) = \mathfrak{N}_2(F)$$

Suppose that $f_1(x) = f(x)$ and $f_k(x) = (1/2\pi) \int f_{k-1}(x+t)f(-t) dt$. Similarly, suppose that $F_1(x) = F(x)$ and $F_k(x) = (1/2\pi) \int F_{k-1}(x+t)F(-t) dt$. By mathematical induction it can be shown that $F_k(x) \ge |f_k(x)|$, that [2; 14], $f_k(x) \sim \sum_{-\infty}^{\infty} c_m^k e^{mix}$, and that $F_k(x) \sim \sum_{-\infty}^{\infty} C_m^k e^{mix}$. The result when q = 2 shows that $\mathfrak{N}_2(f_k) \le \mathfrak{N}_2(F_k)$; therefore,

$$\mathfrak{N}_{2k}(f) = \mathfrak{N}_{2}^{1/k}(f_{k}) \leq \mathfrak{N}_{2}^{1/k}(F_{k}) = \mathfrak{N}_{2k}(F).$$

Received September 20, 1945; presented to the American Mathematical Society, October 27, 1945.