THE EXISTENCE OF SOLUTIONS TO LAGRANGE PROBLEMS FOR MULTIPLE INTEGRALS

By J. V. LEWIS

1. Introduction. We consider the problem of minimizing the Lebesgue integral

$$\int_{G} f(x_1, \cdots, x_N, z_1, \cdots, z_m, D_1z_1, \cdots, D_{x_N}z_m) dx_1 \cdots dx_N$$

over a region G in E_N among a suitable class of admissible functions z on G to E_m (where z_1, \dots, z_m are such functions that $z(x) = (z_1(x), \dots, z_m(x))$ for every x in G) which have boundary values in a given family Γ and which satisfy a set of quasilinear differential equations

$$\theta_i(x_1, \dots, x_N, z_1, \dots, z_m, D_{x_1}z_1, \dots, D_{x_N}z_m) = 0$$
 $(i = 1, \dots, r)$

almost everywhere on G. The class \mathfrak{P}_1 of potential functions integrable together with their generalized derivatives on a region G which were introduced by G. C. Evans [2] and extensively studied by C. B. Morrey, Jr., [1] and [4], form a class of functions of which our admissible functions are a subclass.

2. The class $\mathfrak{P}_{\alpha}(\alpha \geq 1)$.

2.1. DEFINITION. A function on a region G to E_m is of class \mathfrak{P} on G if and only if each of its components is a function on G to E_1 of class \mathfrak{P} on G [4; Definition 1].

2.2. DEFINITION. If z on G to E_m is of class \mathfrak{P} on G with components z_1, \dots, z_m and generalized derivatives [4; Definition 5] $D_{z_1}z_1, \dots, D_{z_N}z_m$, $\alpha \geq 1$, then we define

$$D_{\alpha}(z, G) = \int_{G} \left[\sum_{i=1}^{m} \sum_{i=1}^{N} (D_{x_{i}} z_{i})^{2} \right]^{\frac{1}{2}\alpha} dx,$$
$$|| z ||^{\alpha} = D_{\alpha}(z, G) + \int_{G} \left[\sum_{i=1}^{m} z_{i}^{2} \right]^{\frac{1}{2}\alpha} dx.$$

If ||z|| is finite, z is said to be of class \mathfrak{P}_{α} on G. We read ||z|| as the norm of z in \mathfrak{P}_{α} on G.

2.3. THEOREM. The space \mathfrak{P}_{α} ($\alpha \geq 1$) of classes of equivalent functions on G to E_1 of class \mathfrak{P}_{α} on G is a Banach space.

Received January 23, 1945; in revised form June 27, 1945.