BOUNDARY ALTERNATION OF MONOTONE MAPPINGS

By G. T. Whyburn

1. Introduction. In connection with the problem of extending a non-alternating mapping of a continuum on a plane or sphere monotonically to the whole plane or sphere (see [1]) the question naturally arises as to when a monotone mapping on the closure of a bounded region will be non-alternating on the boundary of the region. This question is relevant particularly to the study of the necessity of conditions for such extensibility.

If the region is bounded by a simple closed curve, the answer to the question is simply that any monotone mapping on the closure of the region is automatically non-alternating on the boundary (see [2; 173]). However, in even a slightly less restricted case this need not be true. For let R be the region obtained by removing the interval $I: y = 0, 0 \le x < 1$ from the interior of the circle $C: x^2 + y^2 = 1$ and let $f(\overline{R}) = H$ be the mapping f(x, y) = (x, 0)for $(x, y) \in \overline{R}$. Then H is the interval $y = 0, -1 \le x \le 1$ and clearly f is monotone on \overline{R} . However, as applied to the boundary A(= C + I) of R it is seen at once that f(A) = H; but for any two distinct points $p: (x_p, 0)$ and $q: (x_q, 0)$ of H with $0 \le x_q < x_p < 1$, $f^{-1}(p) \cdot A$ separates two points of $f^{-1}(q) \cdot A$ in A so that f alternates on A.

It will be recalled that a continuous mapping f(X) = Y is monotone if $f^{-1}(y)$ is a continuum for each $y \in Y$ and is non-alternating if for no $x, y \in Y$ does $f^{-1}(x)$ separate two points of $f^{-1}(y)$ in X. Throughout this paper R will denote a plane bounded region with connected boundary A. By a cross cut in R or in \overline{R} we will mean a simple arc ab in \overline{R} with $a \neq b$ and $ab \cdot A = a + b$. Each such cross cut divides R into two regions R_1 and R_2 such that $F(R_1) \cdot F(R_2) \supset ab$, where in general F(G) denotes the boundary of the region G. The regions R_1 and R_2 will be called the regions of the cross cut or determined by the cross cut.

2. Direct method.

(2.1). LEMMA. If ab is any cross cut in a plane bounded simply connected region R dividing R into the regions R_1 and R_2 , $F(R_1) \cdot F(R)$ and $F(R_2) \cdot F(R)$ are continua.

Proof. Let $X = F(R_1) \cdot F(R)$. Suppose on the contrary that there is a separation

(i)
$$X = X_1 + X_2$$
.

Then one of these sets contains a and the other contains b. For if X_1 , say, contained both a and b, we would have the separation

$$F(R_1) = X + ab = (X_1 + ab) + X_2,$$

Received September 5, 1945.