# AN EXTENSION OF SOME PREVIOUS RESULTS ON GENERALIZED CONTINUED FRACTIONS 

By B. H. Bissinger and F. Herzog

1. Introduction. The results of this paper depend on two previous papers by the authors, [2] and [5], the contents of which will be briefly described here.

In [2] Bissinger generalized the notion of a simple continued fraction by introducing a class $F$ of real functions $f(t), t \geq 1$, defined in [2; §2]. He showed that if $f \varepsilon F$ any number $x$ in ( 0,1 ), i.e., in the interval $0<x<1$, can be expanded in the form

$$
\begin{equation*}
x=f\left(a_{1}+f\left(a_{2}+f\left(a_{3}+\cdots\right.\right.\right. \tag{1.1}
\end{equation*}
$$

with positive integral $a_{n}$ and that the correspondence between the $x$ and the (finite and infinite) sequences $\left\{a_{n}\right\}$ is bi-unique, provided that in the case of a finite sequence $\left\{a_{n}\right\}$ the last integer is to be greater than unity. The right side of (1.1) is called the f-expansion of $x$. The simple continued fraction corresponds to the case $f(t)=1 / t$.

The finite ones among the sequences $\left\{a_{n}\right\}$ form a denumerable set, hence the corresponding $x$ form a set of measure zero. Thus in measure theoretical problems we may disregard this case completely. We denote the $a_{n}$ by $a_{n}(x)$, in order to emphasize their dependence on $x$. For any given $f \varepsilon F$ the $a_{n}(x)$ are defined for almost all $x$ in $(0,1)$.

In [5] the authors have investigated the behavior of the $a_{n}(x)$, extending certain results of Borel [3] and F. Bernstein [1] from simple continued fractions to their above-mentioned generalization, i.e., $f$-expansions. For this purpose they assumed that $f(t)$ belongs to a certain subclass $F_{1}$ of $F$, defined in [5; §3]. Under this hypothesis they obtained the following results: (i) the set of all $x$ in $(0,1)$ for which $a_{n}(x) \leq k_{n}$ for all $n$ (the $k_{n}$ being given positive integers) is of measure zero if and only if $\sum_{n} f\left(k_{n}\right)$ diverges [5; Theorem 4.2]; (ii) for almost all $x$ in $(0,1)$ the $a_{n}(x)$ form an unbounded sequence [ 5 ; Theorem 4.3, Corollary]; (iii) for almost all $x$ in ( 0,1 ) infinitely many of the $a_{n}(x)$ are equal to unity [5; Theorem 4.5, Corollary].

Under the same hypothesis, namely, that $f \varepsilon F_{1}$, the authors have in this paper obtained further theorems, concerning the $a_{n}(x)$; some of these constitute considerable extensions of the above results. Instead of (i), the authors consider the set of all $x$ in $(0,1)$ for which $a_{n}(x) \neq k_{n}$ for all $n$. A necessary and sufficient condition that this set be of measure zero is the divergence of $\sum_{n} f^{\prime}\left(k_{n}\right)$. (Theorem 3.2.) On the other hand, the combined results (ii) and (iii) are extended to the following statement: for almost all $x$ in $(0,1)$ the sequence

Received July 26, 1945; presented to the American Mathematical Society, April 28, 1944.

