INTEGRAL EQUATIONS IN PROBLEMS OF REPRESENTATION OF FUNCTIONS OF A COMPLEX VARIABLE

By W. J. Trjitzinsky

1. Introduction. A work of the present author [2] contains a number of representations of the form

$$
\begin{equation*}
f(z)=\iint_{K} \frac{d \mu\left(e_{J}\right)}{J-z}-a(z) \quad(z \text { in } K) \tag{1.1}
\end{equation*}
$$

here $f(z)$ is a given function (of a suitable class, generally non-analytic) of the variable $z=x+i y ; K$ is a bounded connected domain in the complex plane, whose frontier $\bar{K}-K$ has zero two-dimensional measure; integration is in Lebesgue-Stieltjes sense; $\mu(e)$ is a complex-valued additive function of Borel sets $e ; J=J^{\prime}+i J^{\prime \prime}$ is the variable point with respect to which integration is performed; finally, $a(z)$ is a function, not given beforehand, analytic in K and depending on f. Conditions imposed on $f(z)$ in [2] were such that $\mu(e)$ could be determined as an absolutely continuous additive function of sets; accordingly (1.1) could be rewritten in the form

$$
\begin{equation*}
f(z)=\iint_{K} \frac{\varphi(J) d m\left(e_{J}\right)}{J-z}-a(z) \tag{1.2}
\end{equation*}
$$

where $\varphi(J)$ is a complex valued function integrable over K (that is, the real and imaginary parts of $\varphi(J)$ are such) and $m(e)$ is the measure of e. In [2] we, thus, treat problems of the following type: given a function of a given class, to solve the integral equation

$$
\begin{equation*}
\iint_{K} \frac{\varphi(J) d m\left(e_{J}\right)}{J-z}-f(z)=a(z) \tag{1.3}
\end{equation*}
$$

for the unknown $\varphi(J)$, where $\varphi(J)$ is to be of a certain class, while $a(z)$ is not given beforehand, but is to be analytic.

Our present purpose is to study problems of the following type, generalizing the problem (1.3).

Given a kernel (possibly complex valued) $k(z, J)$ and a function $f(z)$ of given classes, to solve the integral equation

$$
\begin{equation*}
\iint_{K} \frac{k(z, J) \varphi(\cdot J) d m\left(e_{J}\right)}{J-z}-f(z)=a(z) \tag{1.4}
\end{equation*}
$$

Received January 11, 1945.

